Mihkelmj's picture
app.py gets the data and runs the model; last year features to be implemented
5064f83
raw
history blame
5.09 kB
import numpy as np
import pandas as pd
import joblib
def create_features(
data,
target_particle, # Added this parameter
lag_days=7,
sma_days=7,
):
"""
Creates lagged features, SMA features, last year's particle data (NO2 and O3) for specific days,
sine and cosine transformations for 'weekday' and 'month', and target variables for the specified
particle ('O3' or 'NO2') for the next 'days_ahead' days. Scales features and targets without
disregarding outliers and saves the scalers for inverse scaling. Splits the data into train,
validation, and test sets using the most recent dates. Prints the number of rows with missing
values dropped from the dataset.
Parameters:
- data (pd.DataFrame): The input time-series dataset.
- target_particle (str): The target particle ('O3' or 'NO2') for which targets are created.
- lag_days (int): Number of lag days to create features for (default 7).
- sma_days (int): Window size for Simple Moving Average (default 7).
- days_ahead (int): Number of days ahead to create target variables for (default 3).
Returns:
- X_train_scaled (pd.DataFrame): Scaled training features.
- y_train_scaled (pd.DataFrame): Scaled training targets.
- X_val_scaled (pd.DataFrame): Scaled validation features (365 days).
- y_val_scaled (pd.DataFrame): Scaled validation targets (365 days).
- X_test_scaled (pd.DataFrame): Scaled test features (365 days).
- y_test_scaled (pd.DataFrame): Scaled test targets (365 days).
"""
import warnings
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
warnings.filterwarnings("ignore")
lag_features = [
"NO2",
"O3",
"wind_speed",
"mean_temp",
"global_radiation",
"minimum_visibility",
"humidity",
]
if target_particle == "NO2":
lag_features = lag_features + ["percipitation", "pressure"]
if target_particle not in ["O3", "NO2"]:
raise ValueError("target_particle must be 'O3' or 'NO2'")
data = data.copy()
data["date"] = pd.to_datetime(data["date"])
data = data.sort_values("date").reset_index(drop=True)
# Extract 'weekday' and 'month' from 'date' if not present
if "weekday" not in data.columns or data["weekday"].dtype == object:
data["weekday"] = data["date"].dt.weekday # Monday=0, Sunday=6
if "month" not in data.columns:
data["month"] = data["date"].dt.month # 1 to 12
# Create sine and cosine transformations for 'weekday' and 'month'
data["weekday_sin"] = np.sin(2 * np.pi * data["weekday"] / 7)
data["weekday_cos"] = np.cos(2 * np.pi * data["weekday"] / 7)
data["month_sin"] = np.sin(
2 * np.pi * (data["month"] - 1) / 12
) # Adjust month to 0-11
data["month_cos"] = np.cos(2 * np.pi * (data["month"] - 1) / 12)
# Create lagged features for the specified lag days
for feature in lag_features:
for lag in range(1, lag_days + 1):
data[f"{feature}_lag_{lag}"] = data[feature].shift(lag)
# Create SMA features
for feature in lag_features:
data[f"{feature}_sma_{sma_days}"] = (
data[feature].rolling(window=sma_days).mean()
)
# Create particle data (NO2 and O3) from the same time last year
# Today last year
data["O3_last_year"] = 0 # data["O3_last_year"] = data["O3"].shift(365)
data["NO2_last_year"] = 0 # data["NO2_last_year"] = data["NO2"].shift(365)
# 7 days before today last year
for i in range(1, lag_days + 1):
data[f"O3_last_year_{i}_days_before"] = 0 # data["O3"].shift(365 + i)
data[f"NO2_last_year_{i}_days_before"] = 0 # data["NO2"].shift(365 + i)
# 3 days after today last year
data["O3_last_year_3_days_after"] = 0 # data["O3"].shift(365 - 3)
data["NO2_last_year_3_days_after"] = 0 # data["NO2"].shift(365 - 3)
# Calculate the number of rows before dropping missing values
rows_before = data.shape[0]
# Drop missing values
data = data.dropna().reset_index(drop=True)
# Calculate the number of rows after dropping missing values
rows_after = data.shape[0]
# Calculate and print the number of rows dropped
rows_dropped = rows_before - rows_after
print(f"Number of rows with missing values dropped: {rows_dropped}")
# Ensure the data is sorted by date in ascending order
data = data.sort_values("date").reset_index(drop=True)
# Define feature columns
exclude_cols = ["date", "weekday", "month"]
feature_cols = [col for col in data.columns if col not in exclude_cols]
# Split features and targets
x = data[feature_cols]
# Initialize scalers
feature_scaler = joblib.load(f"scalers/feature_scaler_{target_particle}.joblib")
# Fit the scalers on the training data
X_scaled = feature_scaler.fit_transform(x)
# Convert scaled data back to DataFrame for consistency
X_scaled = pd.DataFrame(
X_scaled, columns=feature_cols, index=x.index
)
return X_scaled