utrecht-pollution-prediction / src /data_api_calls.py
elisaklunder's picture
joblib scalers changesd:
14fc71f
raw
history blame
6.41 kB
import codecs
import csv
import http.client
import os
import re
import sys
import urllib.request
from datetime import date, timedelta
from io import StringIO
import pandas as pd
WEATHER_DATA_FILE = "weather_data.csv"
POLLUTION_DATA_FILE = "pollution_data.csv"
def update_weather_data():
today = date.today().isoformat()
if os.path.exists(WEATHER_DATA_FILE):
df = pd.read_csv(WEATHER_DATA_FILE)
last_date = pd.to_datetime(df["date"]).max()
start_date = (last_date + timedelta(1)).isoformat()
else:
df = pd.DataFrame()
start_date = (date.today() - timedelta(7)).isoformat()
try:
ResultBytes = urllib.request.urlopen(
f"https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/Utrecht/{start_date}/{today}?unitGroup=metric&elements=datetime%2Cwindspeed%2Ctemp%2Csolarradiation%2Cprecip%2Cpressure%2Cvisibility%2Chumidity&include=days&key=7Y6AY56M6RWVNHQ3SAVHNJWFS&maxStations=1&contentType=csv"
)
CSVText = csv.reader(codecs.iterdecode(ResultBytes, "utf-8"))
new_data = pd.DataFrame(list(CSVText))
new_data.columns = new_data.iloc[0]
new_data = new_data[1:]
new_data = new_data.rename(columns={"datetime": "date"})
updated_df = pd.concat([df, new_data], ignore_index=True)
updated_df.drop_duplicates(subset="date", keep="last", inplace=True)
updated_df.to_csv(WEATHER_DATA_FILE, index=False)
except urllib.error.HTTPError as e:
ErrorInfo = e.read().decode()
print("Error code: ", e.code, ErrorInfo)
sys.exit()
except urllib.error.URLError as e:
ErrorInfo = e.read().decode()
print("Error code: ", e.code, ErrorInfo)
sys.exit()
def update_pollution_data():
O3 = []
NO2 = []
particles = ["NO2", "O3"]
stations = ["NL10636", "NL10639", "NL10643"]
all_dataframes = []
today = date.today().isoformat() + "T09:00:00Z"
yesterday = (date.today() - timedelta(1)).isoformat() + "T09:00:00Z"
if os.path.exists(POLLUTION_DATA_FILE):
existing_data = pd.read_csv(POLLUTION_DATA_FILE)
last_date = pd.to_datetime(existing_data["date"]).max()
if last_date >= pd.Timestamp(date.today()):
print("Data is already up to date.")
return
# Only pull data for today if not already updated
for particle in particles:
for station in stations:
conn = http.client.HTTPSConnection("api.luchtmeetnet.nl")
payload = ""
headers = {}
conn.request(
"GET",
f"/open_api/measurements?station_number={station}&formula={particle}&page=1&order_by=timestamp_measured&order_direction=desc&end={today}&start={yesterday}",
payload,
headers,
)
res = conn.getresponse()
data = res.read()
decoded_data = data.decode("utf-8")
df = pd.read_csv(StringIO(decoded_data))
df = df.filter(like="value")
all_dataframes.append(df)
combined_data = pd.concat(all_dataframes, ignore_index=True)
values = []
for row in combined_data:
cleaned_value = re.findall(r"[-+]?\d*\.\d+|\d+", row)
if cleaned_value:
values.append(float(cleaned_value[0]))
if values:
avg = sum(values) / len(values)
if particle == "NO2":
NO2.append(avg)
else:
O3.append(avg)
new_data = pd.DataFrame(
{
"date": [date.today()],
"NO2": NO2,
"O3": O3,
}
)
updated_data = pd.concat([existing_data, new_data], ignore_index=True)
updated_data.drop_duplicates(subset="date", keep="last", inplace=True)
updated_data.to_csv(POLLUTION_DATA_FILE, index=False)
def get_combined_data():
weather_df = pd.read_csv(WEATHER_DATA_FILE)
today = pd.Timestamp.now().normalize()
seven_days_ago = today - pd.Timedelta(days=7)
weather_df["date"] = pd.to_datetime(weather_df["date"])
weather_df = weather_df[(weather_df["date"] >= seven_days_ago) & (weather_df["date"] <= today)]
weather_df.insert(1, "NO2", None)
weather_df.insert(2, "O3", None)
weather_df.insert(10, "weekday", None)
columns = list(weather_df.columns)
columns.insert(3, columns.pop(6))
weather_df = weather_df[columns]
columns.insert(5, columns.pop(9))
weather_df = weather_df[columns]
columns.insert(9, columns.pop(6))
weather_df = weather_df[columns]
combined_df = weather_df
# Apply scaling and renaming similar to the scale function from previous code
combined_df = combined_df.rename(
columns={
"date": "date",
"windspeed": "wind_speed",
"temp": "mean_temp",
"solarradiation": "global_radiation",
"precip": "percipitation",
"sealevelpressure": "pressure",
"visibility": "minimum_visibility",
}
)
combined_df["date"] = pd.to_datetime(combined_df["date"])
combined_df["weekday"] = combined_df["date"].dt.day_name()
combined_df["wind_speed"] = (combined_df["wind_speed"] / 3.6) * 10
combined_df["mean_temp"] = combined_df["mean_temp"] * 10
combined_df["minimum_visibility"] = combined_df["minimum_visibility"] * 10
combined_df["percipitation"] = combined_df["percipitation"] * 10
combined_df["pressure"] = combined_df["pressure"] * 10
combined_df["wind_speed"] = combined_df["wind_speed"].astype(int)
combined_df["mean_temp"] = combined_df["mean_temp"].astype(int)
combined_df["minimum_visibility"] = combined_df["minimum_visibility"].astype(int)
combined_df["percipitation"] = combined_df["percipitation"].astype(int)
combined_df["pressure"] = combined_df["pressure"].astype(int)
combined_df["humidity"] = combined_df["humidity"].astype(int)
combined_df["global_radiation"] = combined_df["global_radiation"].astype(int)
pollution_df = pd.read_csv(POLLUTION_DATA_FILE)
pollution_df["date"] = pd.to_datetime(pollution_df["date"])
pollution_df = pollution_df[(pollution_df["date"] >= seven_days_ago) & (pollution_df["date"] <= today)]
combined_df["NO2"] = pollution_df["NO2"]
combined_df["O3"] = pollution_df["O3"]
return combined_df