Spaces:
Runtime error
Runtime error
Commit
β’
25d3956
1
Parent(s):
0f5fa8e
Update app.py
Browse files
app.py
CHANGED
@@ -20,6 +20,7 @@ from sgm.util import default, instantiate_from_config
|
|
20 |
|
21 |
import gradio as gr
|
22 |
import uuid
|
|
|
23 |
from huggingface_hub import hf_hub_download
|
24 |
|
25 |
hf_hub_download(repo_id="stabilityai/stable-video-diffusion-img2vid-xt", filename="svd_xt.safetensors", local_dir="checkpoints")
|
@@ -67,11 +68,12 @@ model, filter = load_model(
|
|
67 |
|
68 |
def sample(
|
69 |
input_path: str = "assets/test_image.png", # Can either be image file or folder with image files
|
|
|
|
|
70 |
version: str = "svd_xt",
|
71 |
fps_id: int = 6,
|
72 |
motion_bucket_id: int = 127,
|
73 |
cond_aug: float = 0.02,
|
74 |
-
seed: int = 23,
|
75 |
decoding_t: int = 7, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
|
76 |
device: str = "cuda",
|
77 |
output_folder: str = "outputs",
|
@@ -81,6 +83,10 @@ def sample(
|
|
81 |
Simple script to generate a single sample conditioned on an image `input_path` or multiple images, one for each
|
82 |
image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t`.
|
83 |
"""
|
|
|
|
|
|
|
|
|
84 |
torch.manual_seed(seed)
|
85 |
|
86 |
path = Path(input_path)
|
@@ -213,7 +219,7 @@ def sample(
|
|
213 |
writer.write(frame)
|
214 |
writer.release()
|
215 |
|
216 |
-
return video_path
|
217 |
|
218 |
def get_unique_embedder_keys_from_conditioner(conditioner):
|
219 |
return list(set([x.input_key for x in conditioner.embedders]))
|
@@ -296,13 +302,18 @@ with gr.Blocks() as demo:
|
|
296 |
gr.Markdown('''# Stable Video Diffusion - Image2Video - XT
|
297 |
Generate 25 frames of video from a single image at 6 fps. Each generation takes ~60s on the A100. [Join the waitlist](https://stability.ai/contact) for a native web experience for video.
|
298 |
''')
|
299 |
-
with gr.
|
300 |
-
with gr.
|
301 |
image = gr.Image(label="Upload your image (it will be center cropped to 1024x576)", type="filepath")
|
302 |
-
|
303 |
-
|
|
|
|
|
|
|
|
|
|
|
304 |
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
|
305 |
-
generate_btn.click(fn=sample, inputs=image, outputs=video, api_name="video")
|
306 |
-
|
307 |
if __name__ == "__main__":
|
308 |
demo.launch(share=True)
|
|
|
20 |
|
21 |
import gradio as gr
|
22 |
import uuid
|
23 |
+
import random
|
24 |
from huggingface_hub import hf_hub_download
|
25 |
|
26 |
hf_hub_download(repo_id="stabilityai/stable-video-diffusion-img2vid-xt", filename="svd_xt.safetensors", local_dir="checkpoints")
|
|
|
68 |
|
69 |
def sample(
|
70 |
input_path: str = "assets/test_image.png", # Can either be image file or folder with image files
|
71 |
+
seed: Optional[int] = None,
|
72 |
+
randomize_seed: bool = True,
|
73 |
version: str = "svd_xt",
|
74 |
fps_id: int = 6,
|
75 |
motion_bucket_id: int = 127,
|
76 |
cond_aug: float = 0.02,
|
|
|
77 |
decoding_t: int = 7, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
|
78 |
device: str = "cuda",
|
79 |
output_folder: str = "outputs",
|
|
|
83 |
Simple script to generate a single sample conditioned on an image `input_path` or multiple images, one for each
|
84 |
image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t`.
|
85 |
"""
|
86 |
+
if(randomize_seed):
|
87 |
+
max_64_bit_int = 2**63 - 1
|
88 |
+
seed = random.randint(0, max_64_bit_int)
|
89 |
+
|
90 |
torch.manual_seed(seed)
|
91 |
|
92 |
path = Path(input_path)
|
|
|
219 |
writer.write(frame)
|
220 |
writer.release()
|
221 |
|
222 |
+
return video_path, seed
|
223 |
|
224 |
def get_unique_embedder_keys_from_conditioner(conditioner):
|
225 |
return list(set([x.input_key for x in conditioner.embedders]))
|
|
|
302 |
gr.Markdown('''# Stable Video Diffusion - Image2Video - XT
|
303 |
Generate 25 frames of video from a single image at 6 fps. Each generation takes ~60s on the A100. [Join the waitlist](https://stability.ai/contact) for a native web experience for video.
|
304 |
''')
|
305 |
+
with gr.Row():
|
306 |
+
with gr.Column():
|
307 |
image = gr.Image(label="Upload your image (it will be center cropped to 1024x576)", type="filepath")
|
308 |
+
generate_btn = gr.Button("Generate")
|
309 |
+
video = gr.Video()
|
310 |
+
with gr.Accordion(open=False):
|
311 |
+
seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int)
|
312 |
+
randomize_seed = gr.Checkbox("Randomize seed")
|
313 |
+
|
314 |
+
|
315 |
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
|
316 |
+
generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed], outputs=[video, seed], api_name="video")
|
317 |
+
|
318 |
if __name__ == "__main__":
|
319 |
demo.launch(share=True)
|