|
--- |
|
language: en |
|
datasets: |
|
- msp-podcast |
|
inference: true |
|
tags: |
|
- speech |
|
- audio |
|
- wav2vec2 |
|
- audio-classification |
|
- emotion-recognition |
|
license: cc-by-nc-sa-4.0 |
|
pipeline_tag: audio-classification |
|
--- |
|
|
|
# Model for Dimensional Speech Emotion Recognition based on Wav2vec 2.0 |
|
|
|
The model expects a raw audio signal as input and outputs predictions for arousal, dominance and valence in a range of approximately 0...1. In addition, it also provides the pooled states of the last transformer layer. The model was created by fine-tuning [ |
|
Wav2Vec2-Large-Robust](https://huggingface.co/facebook/wav2vec2-large-robust) on [MSP-Podcast](https://ecs.utdallas.edu/research/researchlabs/msp-lab/MSP-Podcast.html) (v1.7). The model was pruned from 24 to 12 transformer layers before fine-tuning. An [ONNX](https://onnx.ai/") export of the model is available from [doi:10.5281/zenodo.6221127](https://zenodo.org/record/6221127). Further details are given in the associated [paper](https://arxiv.org/abs/2203.07378) and [tutorial](https://github.com/audeering/w2v2-how-to). |
|
|
|
# Usage |
|
|
|
```python |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
from transformers import Wav2Vec2Processor |
|
from transformers.models.wav2vec2.modeling_wav2vec2 import ( |
|
Wav2Vec2Model, |
|
Wav2Vec2PreTrainedModel, |
|
) |
|
|
|
|
|
class RegressionHead(nn.Module): |
|
r"""Classification head.""" |
|
|
|
def __init__(self, config): |
|
|
|
super().__init__() |
|
|
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.dropout = nn.Dropout(config.final_dropout) |
|
self.out_proj = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
def forward(self, features, **kwargs): |
|
|
|
x = features |
|
x = self.dropout(x) |
|
x = self.dense(x) |
|
x = torch.tanh(x) |
|
x = self.dropout(x) |
|
x = self.out_proj(x) |
|
|
|
return x |
|
|
|
|
|
class EmotionModel(Wav2Vec2PreTrainedModel): |
|
r"""Speech emotion classifier.""" |
|
|
|
def __init__(self, config): |
|
|
|
super().__init__(config) |
|
|
|
self.config = config |
|
self.wav2vec2 = Wav2Vec2Model(config) |
|
self.classifier = RegressionHead(config) |
|
self.init_weights() |
|
|
|
def forward( |
|
self, |
|
input_values, |
|
): |
|
|
|
outputs = self.wav2vec2(input_values) |
|
hidden_states = outputs[0] |
|
hidden_states = torch.mean(hidden_states, dim=1) |
|
logits = self.classifier(hidden_states) |
|
|
|
return hidden_states, logits |
|
|
|
|
|
|
|
# load model from hub |
|
device = 'cpu' |
|
model_name = 'audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim' |
|
processor = Wav2Vec2Processor.from_pretrained(model_name) |
|
model = EmotionModel.from_pretrained(model_name) |
|
|
|
# dummy signal |
|
sampling_rate = 16000 |
|
signal = np.zeros((1, sampling_rate), dtype=np.float32) |
|
|
|
|
|
def process_func( |
|
x: np.ndarray, |
|
sampling_rate: int, |
|
embeddings: bool = False, |
|
) -> np.ndarray: |
|
r"""Predict emotions or extract embeddings from raw audio signal.""" |
|
|
|
# run through processor to normalize signal |
|
# always returns a batch, so we just get the first entry |
|
# then we put it on the device |
|
y = processor(x, sampling_rate=sampling_rate) |
|
y = y['input_values'][0] |
|
y = y.reshape(1, -1) |
|
y = torch.from_numpy(y).to(device) |
|
|
|
# run through model |
|
with torch.no_grad(): |
|
y = model(y)[0 if embeddings else 1] |
|
|
|
# convert to numpy |
|
y = y.detach().cpu().numpy() |
|
|
|
return y |
|
|
|
|
|
print(process_func(signal, sampling_rate)) |
|
# Arousal dominance valence |
|
# [[0.5460754 0.6062266 0.40431657]] |
|
|
|
print(process_func(signal, sampling_rate, embeddings=True)) |
|
# Pooled hidden states of last transformer layer |
|
# [[-0.00752167 0.0065819 -0.00746342 ... 0.00663632 0.00848748 |
|
# 0.00599211]] |
|
``` |
|
|