Spaces:
Running
Running
from options.base_option import BaseOptions | |
import argparse | |
class TrainT2MOptions(BaseOptions): | |
def initialize(self): | |
BaseOptions.initialize(self) | |
self.parser.add_argument('--batch_size', type=int, default=64, help='Batch size') | |
self.parser.add_argument('--max_epoch', type=int, default=500, help='Maximum number of epoch for training') | |
# self.parser.add_argument('--max_iters', type=int, default=150_000, help='Training iterations') | |
'''LR scheduler''' | |
self.parser.add_argument('--lr', type=float, default=2e-4, help='Learning rate') | |
self.parser.add_argument('--gamma', type=float, default=0.1, help='Learning rate schedule factor') | |
self.parser.add_argument('--milestones', default=[50_000], nargs="+", type=int, | |
help="learning rate schedule (iterations)") | |
self.parser.add_argument('--warm_up_iter', default=2000, type=int, help='number of total iterations for warmup') | |
'''Condition''' | |
self.parser.add_argument('--cond_drop_prob', type=float, default=0.1, help='Drop ratio of condition, for classifier-free guidance') | |
self.parser.add_argument("--seed", default=3407, type=int, help="Seed") | |
self.parser.add_argument('--is_continue', action="store_true", help='Is this trial continuing previous state?') | |
self.parser.add_argument('--gumbel_sample', action="store_true", help='Strategy for token sampling, True: Gumbel sampling, False: Categorical sampling') | |
self.parser.add_argument('--share_weight', action="store_true", help='Whether to share weight for projection/embedding, for residual transformer.') | |
self.parser.add_argument('--log_every', type=int, default=50, help='Frequency of printing training progress, (iteration)') | |
# self.parser.add_argument('--save_every_e', type=int, default=100, help='Frequency of printing training progress') | |
self.parser.add_argument('--eval_every_e', type=int, default=10, help='Frequency of animating eval results, (epoch)') | |
self.parser.add_argument('--save_latest', type=int, default=500, help='Frequency of saving checkpoint, (iteration)') | |
self.is_train = True | |
class TrainLenEstOptions(): | |
def __init__(self): | |
self.parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
self.parser.add_argument('--name', type=str, default="test", help='Name of this trial') | |
self.parser.add_argument("--gpu_id", type=int, default=-1, help='GPU id') | |
self.parser.add_argument('--dataset_name', type=str, default='t2m', help='Dataset Name') | |
self.parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints', help='models are saved here') | |
self.parser.add_argument('--batch_size', type=int, default=64, help='Batch size') | |
self.parser.add_argument("--unit_length", type=int, default=4, help="Length of motion") | |
self.parser.add_argument("--max_text_len", type=int, default=20, help="Length of motion") | |
self.parser.add_argument('--max_epoch', type=int, default=300, help='Training iterations') | |
self.parser.add_argument('--lr', type=float, default=1e-4, help='Layers of GRU') | |
self.parser.add_argument('--is_continue', action="store_true", help='Training iterations') | |
self.parser.add_argument('--log_every', type=int, default=50, help='Frequency of printing training progress') | |
self.parser.add_argument('--save_every_e', type=int, default=5, help='Frequency of printing training progress') | |
self.parser.add_argument('--eval_every_e', type=int, default=3, help='Frequency of printing training progress') | |
self.parser.add_argument('--save_latest', type=int, default=500, help='Frequency of printing training progress') | |
def parse(self): | |
self.opt = self.parser.parse_args() | |
self.opt.is_train = True | |
# args = vars(self.opt) | |
return self.opt | |