Spaces:
Running
Running
from data.t2m_dataset import Text2MotionDatasetEval, collate_fn # TODO | |
from utils.word_vectorizer import WordVectorizer | |
import numpy as np | |
from os.path import join as pjoin | |
from torch.utils.data import DataLoader | |
from utils.get_opt import get_opt | |
def get_dataset_motion_loader(opt_path, batch_size, fname, device): | |
opt = get_opt(opt_path, device) | |
# Configurations of T2M dataset and KIT dataset is almost the same | |
if opt.dataset_name == 't2m' or opt.dataset_name == 'kit': | |
print('Loading dataset %s ...' % opt.dataset_name) | |
mean = np.load(pjoin(opt.meta_dir, 'mean.npy')) | |
std = np.load(pjoin(opt.meta_dir, 'std.npy')) | |
w_vectorizer = WordVectorizer('./glove', 'our_vab') | |
split_file = pjoin(opt.data_root, '%s.txt'%fname) | |
dataset = Text2MotionDatasetEval(opt, mean, std, split_file, w_vectorizer) | |
dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=4, drop_last=True, | |
collate_fn=collate_fn, shuffle=True) | |
else: | |
raise KeyError('Dataset not Recognized !!') | |
print('Ground Truth Dataset Loading Completed!!!') | |
return dataloader, dataset |