MoMask / options /base_option.py
MeYourHint's picture
first demo version
c0eac48
raw
history blame
2.86 kB
import argparse
import os
import torch
class BaseOptions():
def __init__(self):
self.parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
self.initialized = False
def initialize(self):
self.parser.add_argument('--name', type=str, default="t2m_nlayer8_nhead6_ld384_ff1024_cdp0.1_rvq6ns", help='Name of this trial')
self.parser.add_argument('--vq_name', type=str, default="rvq_nq1_dc512_nc512", help='Name of the rvq model.')
self.parser.add_argument("--gpu_id", type=int, default=-1, help='GPU id')
self.parser.add_argument('--dataset_name', type=str, default='t2m', help='Dataset Name, {t2m} for humanml3d, {kit} for kit-ml')
self.parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints', help='models are saved here.')
self.parser.add_argument('--latent_dim', type=int, default=384, help='Dimension of transformer latent.')
self.parser.add_argument('--n_heads', type=int, default=6, help='Number of heads.')
self.parser.add_argument('--n_layers', type=int, default=8, help='Number of attention layers.')
self.parser.add_argument('--ff_size', type=int, default=1024, help='FF_Size')
self.parser.add_argument('--dropout', type=float, default=0.2, help='Dropout ratio in transformer')
self.parser.add_argument("--max_motion_length", type=int, default=196, help="Max length of motion")
self.parser.add_argument("--unit_length", type=int, default=4, help="Downscale ratio of VQ")
self.parser.add_argument('--force_mask', action="store_true", help='True: mask out conditions')
self.initialized = True
def parse(self):
if not self.initialized:
self.initialize()
self.opt = self.parser.parse_args()
self.opt.is_train = self.is_train
if self.opt.gpu_id != -1:
# self.opt.gpu_id = int(self.opt.gpu_id)
torch.cuda.set_device(self.opt.gpu_id)
args = vars(self.opt)
print('------------ Options -------------')
for k, v in sorted(args.items()):
print('%s: %s' % (str(k), str(v)))
print('-------------- End ----------------')
if self.is_train:
# save to the disk
expr_dir = os.path.join(self.opt.checkpoints_dir, self.opt.dataset_name, self.opt.name)
if not os.path.exists(expr_dir):
os.makedirs(expr_dir)
file_name = os.path.join(expr_dir, 'opt.txt')
with open(file_name, 'wt') as opt_file:
opt_file.write('------------ Options -------------\n')
for k, v in sorted(args.items()):
opt_file.write('%s: %s\n' % (str(k), str(v)))
opt_file.write('-------------- End ----------------\n')
return self.opt