Spaces:
Running
Running
from os.path import join as pjoin | |
from common.skeleton import Skeleton | |
import numpy as np | |
import os | |
from common.quaternion import * | |
from utils.paramUtil import * | |
import torch | |
# positions (batch, joint_num, 3) | |
def uniform_skeleton(positions, target_offset): | |
src_skel = Skeleton(n_raw_offsets, kinematic_chain, 'cpu') | |
src_offset = src_skel.get_offsets_joints(torch.from_numpy(positions[0])) | |
src_offset = src_offset.numpy() | |
tgt_offset = target_offset.numpy() | |
# print(src_offset) | |
# print(tgt_offset) | |
'''Calculate Scale Ratio as the ratio of legs''' | |
src_leg_len = np.abs(src_offset[l_idx1]).max() + np.abs(src_offset[l_idx2]).max() | |
tgt_leg_len = np.abs(tgt_offset[l_idx1]).max() + np.abs(tgt_offset[l_idx2]).max() | |
scale_rt = tgt_leg_len / src_leg_len | |
# print(scale_rt) | |
src_root_pos = positions[:, 0] | |
tgt_root_pos = src_root_pos * scale_rt | |
'''Inverse Kinematics''' | |
quat_params = src_skel.inverse_kinematics_np(positions, face_joint_indx) | |
# print(quat_params.shape) | |
'''Forward Kinematics''' | |
src_skel.set_offset(target_offset) | |
new_joints = src_skel.forward_kinematics_np(quat_params, tgt_root_pos) | |
return new_joints | |
def extract_features(positions, feet_thre, n_raw_offsets, kinematic_chain, face_joint_indx, fid_r, fid_l): | |
global_positions = positions.copy() | |
""" Get Foot Contacts """ | |
def foot_detect(positions, thres): | |
velfactor, heightfactor = np.array([thres, thres]), np.array([3.0, 2.0]) | |
feet_l_x = (positions[1:, fid_l, 0] - positions[:-1, fid_l, 0]) ** 2 | |
feet_l_y = (positions[1:, fid_l, 1] - positions[:-1, fid_l, 1]) ** 2 | |
feet_l_z = (positions[1:, fid_l, 2] - positions[:-1, fid_l, 2]) ** 2 | |
# feet_l_h = positions[:-1,fid_l,1] | |
# feet_l = (((feet_l_x + feet_l_y + feet_l_z) < velfactor) & (feet_l_h < heightfactor)).astype(np.float) | |
feet_l = ((feet_l_x + feet_l_y + feet_l_z) < velfactor).astype(np.float) | |
feet_r_x = (positions[1:, fid_r, 0] - positions[:-1, fid_r, 0]) ** 2 | |
feet_r_y = (positions[1:, fid_r, 1] - positions[:-1, fid_r, 1]) ** 2 | |
feet_r_z = (positions[1:, fid_r, 2] - positions[:-1, fid_r, 2]) ** 2 | |
# feet_r_h = positions[:-1,fid_r,1] | |
# feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor) & (feet_r_h < heightfactor)).astype(np.float) | |
feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor)).astype(np.float) | |
return feet_l, feet_r | |
# | |
feet_l, feet_r = foot_detect(positions, feet_thre) | |
# feet_l, feet_r = foot_detect(positions, 0.002) | |
'''Quaternion and Cartesian representation''' | |
r_rot = None | |
def get_rifke(positions): | |
'''Local pose''' | |
positions[..., 0] -= positions[:, 0:1, 0] | |
positions[..., 2] -= positions[:, 0:1, 2] | |
'''All pose face Z+''' | |
positions = qrot_np(np.repeat(r_rot[:, None], positions.shape[1], axis=1), positions) | |
return positions | |
def get_quaternion(positions): | |
skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu") | |
# (seq_len, joints_num, 4) | |
quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=False) | |
'''Fix Quaternion Discontinuity''' | |
quat_params = qfix(quat_params) | |
# (seq_len, 4) | |
r_rot = quat_params[:, 0].copy() | |
# print(r_rot[0]) | |
'''Root Linear Velocity''' | |
# (seq_len - 1, 3) | |
velocity = (positions[1:, 0] - positions[:-1, 0]).copy() | |
# print(r_rot.shape, velocity.shape) | |
velocity = qrot_np(r_rot[1:], velocity) | |
'''Root Angular Velocity''' | |
# (seq_len - 1, 4) | |
r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1])) | |
quat_params[1:, 0] = r_velocity | |
# (seq_len, joints_num, 4) | |
return quat_params, r_velocity, velocity, r_rot | |
def get_cont6d_params(positions): | |
skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu") | |
# (seq_len, joints_num, 4) | |
quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=True) | |
'''Quaternion to continuous 6D''' | |
cont_6d_params = quaternion_to_cont6d_np(quat_params) | |
# (seq_len, 4) | |
r_rot = quat_params[:, 0].copy() | |
# print(r_rot[0]) | |
'''Root Linear Velocity''' | |
# (seq_len - 1, 3) | |
velocity = (positions[1:, 0] - positions[:-1, 0]).copy() | |
# print(r_rot.shape, velocity.shape) | |
velocity = qrot_np(r_rot[1:], velocity) | |
'''Root Angular Velocity''' | |
# (seq_len - 1, 4) | |
r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1])) | |
# (seq_len, joints_num, 4) | |
return cont_6d_params, r_velocity, velocity, r_rot | |
cont_6d_params, r_velocity, velocity, r_rot = get_cont6d_params(positions) | |
positions = get_rifke(positions) | |
# trejec = np.cumsum(np.concatenate([np.array([[0, 0, 0]]), velocity], axis=0), axis=0) | |
# r_rotations, r_pos = recover_ric_glo_np(r_velocity, velocity[:, [0, 2]]) | |
# plt.plot(positions_b[:, 0, 0], positions_b[:, 0, 2], marker='*') | |
# plt.plot(ground_positions[:, 0, 0], ground_positions[:, 0, 2], marker='o', color='r') | |
# plt.plot(trejec[:, 0], trejec[:, 2], marker='^', color='g') | |
# plt.plot(r_pos[:, 0], r_pos[:, 2], marker='s', color='y') | |
# plt.xlabel('x') | |
# plt.ylabel('z') | |
# plt.axis('equal') | |
# plt.show() | |
'''Root height''' | |
root_y = positions[:, 0, 1:2] | |
'''Root rotation and linear velocity''' | |
# (seq_len-1, 1) rotation velocity along y-axis | |
# (seq_len-1, 2) linear velovity on xz plane | |
r_velocity = np.arcsin(r_velocity[:, 2:3]) | |
l_velocity = velocity[:, [0, 2]] | |
# print(r_velocity.shape, l_velocity.shape, root_y.shape) | |
root_data = np.concatenate([r_velocity, l_velocity, root_y[:-1]], axis=-1) | |
'''Get Joint Rotation Representation''' | |
# (seq_len, (joints_num-1) *6) quaternion for skeleton joints | |
rot_data = cont_6d_params[:, 1:].reshape(len(cont_6d_params), -1) | |
'''Get Joint Rotation Invariant Position Represention''' | |
# (seq_len, (joints_num-1)*3) local joint position | |
ric_data = positions[:, 1:].reshape(len(positions), -1) | |
'''Get Joint Velocity Representation''' | |
# (seq_len-1, joints_num*3) | |
local_vel = qrot_np(np.repeat(r_rot[:-1, None], global_positions.shape[1], axis=1), | |
global_positions[1:] - global_positions[:-1]) | |
local_vel = local_vel.reshape(len(local_vel), -1) | |
data = root_data | |
data = np.concatenate([data, ric_data[:-1]], axis=-1) | |
data = np.concatenate([data, rot_data[:-1]], axis=-1) | |
# print(data.shape, local_vel.shape) | |
data = np.concatenate([data, local_vel], axis=-1) | |
data = np.concatenate([data, feet_l, feet_r], axis=-1) | |
return data | |
def process_file(positions, feet_thre): | |
# (seq_len, joints_num, 3) | |
# '''Down Sample''' | |
# positions = positions[::ds_num] | |
'''Uniform Skeleton''' | |
positions = uniform_skeleton(positions, tgt_offsets) | |
'''Put on Floor''' | |
floor_height = positions.min(axis=0).min(axis=0)[1] | |
positions[:, :, 1] -= floor_height | |
# print(floor_height) | |
# plot_3d_motion("./positions_1.mp4", kinematic_chain, positions, 'title', fps=20) | |
'''XZ at origin''' | |
root_pos_init = positions[0] | |
root_pose_init_xz = root_pos_init[0] * np.array([1, 0, 1]) | |
positions = positions - root_pose_init_xz | |
# '''Move the first pose to origin ''' | |
# root_pos_init = positions[0] | |
# positions = positions - root_pos_init[0] | |
'''All initially face Z+''' | |
r_hip, l_hip, sdr_r, sdr_l = face_joint_indx | |
across1 = root_pos_init[r_hip] - root_pos_init[l_hip] | |
across2 = root_pos_init[sdr_r] - root_pos_init[sdr_l] | |
across = across1 + across2 | |
across = across / np.sqrt((across ** 2).sum(axis=-1))[..., np.newaxis] | |
# forward (3,), rotate around y-axis | |
forward_init = np.cross(np.array([[0, 1, 0]]), across, axis=-1) | |
# forward (3,) | |
forward_init = forward_init / np.sqrt((forward_init ** 2).sum(axis=-1))[..., np.newaxis] | |
# print(forward_init) | |
target = np.array([[0, 0, 1]]) | |
root_quat_init = qbetween_np(forward_init, target) | |
root_quat_init = np.ones(positions.shape[:-1] + (4,)) * root_quat_init | |
positions_b = positions.copy() | |
positions = qrot_np(root_quat_init, positions) | |
# plot_3d_motion("./positions_2.mp4", kinematic_chain, positions, 'title', fps=20) | |
'''New ground truth positions''' | |
global_positions = positions.copy() | |
# plt.plot(positions_b[:, 0, 0], positions_b[:, 0, 2], marker='*') | |
# plt.plot(positions[:, 0, 0], positions[:, 0, 2], marker='o', color='r') | |
# plt.xlabel('x') | |
# plt.ylabel('z') | |
# plt.axis('equal') | |
# plt.show() | |
""" Get Foot Contacts """ | |
def foot_detect(positions, thres): | |
velfactor, heightfactor = np.array([thres, thres]), np.array([3.0, 2.0]) | |
feet_l_x = (positions[1:, fid_l, 0] - positions[:-1, fid_l, 0]) ** 2 | |
feet_l_y = (positions[1:, fid_l, 1] - positions[:-1, fid_l, 1]) ** 2 | |
feet_l_z = (positions[1:, fid_l, 2] - positions[:-1, fid_l, 2]) ** 2 | |
# feet_l_h = positions[:-1,fid_l,1] | |
# feet_l = (((feet_l_x + feet_l_y + feet_l_z) < velfactor) & (feet_l_h < heightfactor)).astype(np.float) | |
feet_l = ((feet_l_x + feet_l_y + feet_l_z) < velfactor).astype(np.float) | |
feet_r_x = (positions[1:, fid_r, 0] - positions[:-1, fid_r, 0]) ** 2 | |
feet_r_y = (positions[1:, fid_r, 1] - positions[:-1, fid_r, 1]) ** 2 | |
feet_r_z = (positions[1:, fid_r, 2] - positions[:-1, fid_r, 2]) ** 2 | |
# feet_r_h = positions[:-1,fid_r,1] | |
# feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor) & (feet_r_h < heightfactor)).astype(np.float) | |
feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor)).astype(np.float) | |
return feet_l, feet_r | |
# | |
feet_l, feet_r = foot_detect(positions, feet_thre) | |
# feet_l, feet_r = foot_detect(positions, 0.002) | |
'''Quaternion and Cartesian representation''' | |
r_rot = None | |
def get_rifke(positions): | |
'''Local pose''' | |
positions[..., 0] -= positions[:, 0:1, 0] | |
positions[..., 2] -= positions[:, 0:1, 2] | |
'''All pose face Z+''' | |
positions = qrot_np(np.repeat(r_rot[:, None], positions.shape[1], axis=1), positions) | |
return positions | |
def get_quaternion(positions): | |
skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu") | |
# (seq_len, joints_num, 4) | |
quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=False) | |
'''Fix Quaternion Discontinuity''' | |
quat_params = qfix(quat_params) | |
# (seq_len, 4) | |
r_rot = quat_params[:, 0].copy() | |
# print(r_rot[0]) | |
'''Root Linear Velocity''' | |
# (seq_len - 1, 3) | |
velocity = (positions[1:, 0] - positions[:-1, 0]).copy() | |
# print(r_rot.shape, velocity.shape) | |
velocity = qrot_np(r_rot[1:], velocity) | |
'''Root Angular Velocity''' | |
# (seq_len - 1, 4) | |
r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1])) | |
quat_params[1:, 0] = r_velocity | |
# (seq_len, joints_num, 4) | |
return quat_params, r_velocity, velocity, r_rot | |
def get_cont6d_params(positions): | |
skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu") | |
# (seq_len, joints_num, 4) | |
quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=True) | |
'''Quaternion to continuous 6D''' | |
cont_6d_params = quaternion_to_cont6d_np(quat_params) | |
# (seq_len, 4) | |
r_rot = quat_params[:, 0].copy() | |
# print(r_rot[0]) | |
'''Root Linear Velocity''' | |
# (seq_len - 1, 3) | |
velocity = (positions[1:, 0] - positions[:-1, 0]).copy() | |
# print(r_rot.shape, velocity.shape) | |
velocity = qrot_np(r_rot[1:], velocity) | |
'''Root Angular Velocity''' | |
# (seq_len - 1, 4) | |
r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1])) | |
# (seq_len, joints_num, 4) | |
return cont_6d_params, r_velocity, velocity, r_rot | |
cont_6d_params, r_velocity, velocity, r_rot = get_cont6d_params(positions) | |
positions = get_rifke(positions) | |
# trejec = np.cumsum(np.concatenate([np.array([[0, 0, 0]]), velocity], axis=0), axis=0) | |
# r_rotations, r_pos = recover_ric_glo_np(r_velocity, velocity[:, [0, 2]]) | |
# plt.plot(positions_b[:, 0, 0], positions_b[:, 0, 2], marker='*') | |
# plt.plot(ground_positions[:, 0, 0], ground_positions[:, 0, 2], marker='o', color='r') | |
# plt.plot(trejec[:, 0], trejec[:, 2], marker='^', color='g') | |
# plt.plot(r_pos[:, 0], r_pos[:, 2], marker='s', color='y') | |
# plt.xlabel('x') | |
# plt.ylabel('z') | |
# plt.axis('equal') | |
# plt.show() | |
'''Root height''' | |
root_y = positions[:, 0, 1:2] | |
'''Root rotation and linear velocity''' | |
# (seq_len-1, 1) rotation velocity along y-axis | |
# (seq_len-1, 2) linear velovity on xz plane | |
r_velocity = np.arcsin(r_velocity[:, 2:3]) | |
l_velocity = velocity[:, [0, 2]] | |
# print(r_velocity.shape, l_velocity.shape, root_y.shape) | |
root_data = np.concatenate([r_velocity, l_velocity, root_y[:-1]], axis=-1) | |
'''Get Joint Rotation Representation''' | |
# (seq_len, (joints_num-1) *6) quaternion for skeleton joints | |
rot_data = cont_6d_params[:, 1:].reshape(len(cont_6d_params), -1) | |
'''Get Joint Rotation Invariant Position Represention''' | |
# (seq_len, (joints_num-1)*3) local joint position | |
ric_data = positions[:, 1:].reshape(len(positions), -1) | |
'''Get Joint Velocity Representation''' | |
# (seq_len-1, joints_num*3) | |
local_vel = qrot_np(np.repeat(r_rot[:-1, None], global_positions.shape[1], axis=1), | |
global_positions[1:] - global_positions[:-1]) | |
local_vel = local_vel.reshape(len(local_vel), -1) | |
data = root_data | |
data = np.concatenate([data, ric_data[:-1]], axis=-1) | |
data = np.concatenate([data, rot_data[:-1]], axis=-1) | |
# print(data.shape, local_vel.shape) | |
data = np.concatenate([data, local_vel], axis=-1) | |
data = np.concatenate([data, feet_l, feet_r], axis=-1) | |
return data, global_positions, positions, l_velocity | |
# Recover global angle and positions for rotation data | |
# root_rot_velocity (B, seq_len, 1) | |
# root_linear_velocity (B, seq_len, 2) | |
# root_y (B, seq_len, 1) | |
# ric_data (B, seq_len, (joint_num - 1)*3) | |
# rot_data (B, seq_len, (joint_num - 1)*6) | |
# local_velocity (B, seq_len, joint_num*3) | |
# foot contact (B, seq_len, 4) | |
def recover_root_rot_pos(data): | |
rot_vel = data[..., 0] | |
r_rot_ang = torch.zeros_like(rot_vel).to(data.device) | |
'''Get Y-axis rotation from rotation velocity''' | |
r_rot_ang[..., 1:] = rot_vel[..., :-1] | |
r_rot_ang = torch.cumsum(r_rot_ang, dim=-1) | |
r_rot_quat = torch.zeros(data.shape[:-1] + (4,)).to(data.device) | |
r_rot_quat[..., 0] = torch.cos(r_rot_ang) | |
r_rot_quat[..., 2] = torch.sin(r_rot_ang) | |
r_pos = torch.zeros(data.shape[:-1] + (3,)).to(data.device) | |
r_pos[..., 1:, [0, 2]] = data[..., :-1, 1:3] | |
'''Add Y-axis rotation to root position''' | |
r_pos = qrot(qinv(r_rot_quat), r_pos) | |
r_pos = torch.cumsum(r_pos, dim=-2) | |
r_pos[..., 1] = data[..., 3] | |
return r_rot_quat, r_pos | |
def recover_from_rot(data, joints_num, skeleton): | |
r_rot_quat, r_pos = recover_root_rot_pos(data) | |
r_rot_cont6d = quaternion_to_cont6d(r_rot_quat) | |
start_indx = 1 + 2 + 1 + (joints_num - 1) * 3 | |
end_indx = start_indx + (joints_num - 1) * 6 | |
cont6d_params = data[..., start_indx:end_indx] | |
# print(r_rot_cont6d.shape, cont6d_params.shape, r_pos.shape) | |
cont6d_params = torch.cat([r_rot_cont6d, cont6d_params], dim=-1) | |
cont6d_params = cont6d_params.view(-1, joints_num, 6) | |
positions = skeleton.forward_kinematics_cont6d(cont6d_params, r_pos) | |
return positions | |
def recover_from_ric(data, joints_num): | |
r_rot_quat, r_pos = recover_root_rot_pos(data) | |
positions = data[..., 4:(joints_num - 1) * 3 + 4] | |
positions = positions.view(positions.shape[:-1] + (-1, 3)) | |
'''Add Y-axis rotation to local joints''' | |
positions = qrot(qinv(r_rot_quat[..., None, :]).expand(positions.shape[:-1] + (4,)), positions) | |
'''Add root XZ to joints''' | |
positions[..., 0] += r_pos[..., 0:1] | |
positions[..., 2] += r_pos[..., 2:3] | |
'''Concate root and joints''' | |
positions = torch.cat([r_pos.unsqueeze(-2), positions], dim=-2) | |
return positions | |
''' | |
For Text2Motion Dataset | |
''' | |
''' | |
if __name__ == "__main__": | |
example_id = "000021" | |
# Lower legs | |
l_idx1, l_idx2 = 5, 8 | |
# Right/Left foot | |
fid_r, fid_l = [8, 11], [7, 10] | |
# Face direction, r_hip, l_hip, sdr_r, sdr_l | |
face_joint_indx = [2, 1, 17, 16] | |
# l_hip, r_hip | |
r_hip, l_hip = 2, 1 | |
joints_num = 22 | |
# ds_num = 8 | |
data_dir = '../dataset/pose_data_raw/joints/' | |
save_dir1 = '../dataset/pose_data_raw/new_joints/' | |
save_dir2 = '../dataset/pose_data_raw/new_joint_vecs/' | |
n_raw_offsets = torch.from_numpy(t2m_raw_offsets) | |
kinematic_chain = t2m_kinematic_chain | |
# Get offsets of target skeleton | |
example_data = np.load(os.path.join(data_dir, example_id + '.npy')) | |
example_data = example_data.reshape(len(example_data), -1, 3) | |
example_data = torch.from_numpy(example_data) | |
tgt_skel = Skeleton(n_raw_offsets, kinematic_chain, 'cpu') | |
# (joints_num, 3) | |
tgt_offsets = tgt_skel.get_offsets_joints(example_data[0]) | |
# print(tgt_offsets) | |
source_list = os.listdir(data_dir) | |
frame_num = 0 | |
for source_file in tqdm(source_list): | |
source_data = np.load(os.path.join(data_dir, source_file))[:, :joints_num] | |
try: | |
data, ground_positions, positions, l_velocity = process_file(source_data, 0.002) | |
rec_ric_data = recover_from_ric(torch.from_numpy(data).unsqueeze(0).float(), joints_num) | |
np.save(pjoin(save_dir1, source_file), rec_ric_data.squeeze().numpy()) | |
np.save(pjoin(save_dir2, source_file), data) | |
frame_num += data.shape[0] | |
except Exception as e: | |
print(source_file) | |
print(e) | |
print('Total clips: %d, Frames: %d, Duration: %fm' % | |
(len(source_list), frame_num, frame_num / 20 / 60)) | |
''' | |
if __name__ == "__main__": | |
example_id = "03950_gt" | |
# Lower legs | |
l_idx1, l_idx2 = 17, 18 | |
# Right/Left foot | |
fid_r, fid_l = [14, 15], [19, 20] | |
# Face direction, r_hip, l_hip, sdr_r, sdr_l | |
face_joint_indx = [11, 16, 5, 8] | |
# l_hip, r_hip | |
r_hip, l_hip = 11, 16 | |
joints_num = 21 | |
# ds_num = 8 | |
data_dir = '../dataset/kit_mocap_dataset/joints/' | |
save_dir1 = '../dataset/kit_mocap_dataset/new_joints/' | |
save_dir2 = '../dataset/kit_mocap_dataset/new_joint_vecs/' | |
n_raw_offsets = torch.from_numpy(kit_raw_offsets) | |
kinematic_chain = kit_kinematic_chain | |
'''Get offsets of target skeleton''' | |
example_data = np.load(os.path.join(data_dir, example_id + '.npy')) | |
example_data = example_data.reshape(len(example_data), -1, 3) | |
example_data = torch.from_numpy(example_data) | |
tgt_skel = Skeleton(n_raw_offsets, kinematic_chain, 'cpu') | |
# (joints_num, 3) | |
tgt_offsets = tgt_skel.get_offsets_joints(example_data[0]) | |
# print(tgt_offsets) | |
source_list = os.listdir(data_dir) | |
frame_num = 0 | |
'''Read source data''' | |
for source_file in tqdm(source_list): | |
source_data = np.load(os.path.join(data_dir, source_file))[:, :joints_num] | |
try: | |
name = ''.join(source_file[:-7].split('_')) + '.npy' | |
data, ground_positions, positions, l_velocity = process_file(source_data, 0.05) | |
rec_ric_data = recover_from_ric(torch.from_numpy(data).unsqueeze(0).float(), joints_num) | |
if np.isnan(rec_ric_data.numpy()).any(): | |
print(source_file) | |
continue | |
np.save(pjoin(save_dir1, name), rec_ric_data.squeeze().numpy()) | |
np.save(pjoin(save_dir2, name), data) | |
frame_num += data.shape[0] | |
except Exception as e: | |
print(source_file) | |
print(e) | |
print('Total clips: %d, Frames: %d, Duration: %fm' % | |
(len(source_list), frame_num, frame_num / 12.5 / 60)) |