Spaces:
Running
Running
import os | |
from os.path import join as pjoin | |
import torch | |
from models.mask_transformer.transformer import MaskTransformer, ResidualTransformer | |
from models.vq.model import RVQVAE | |
from options.eval_option import EvalT2MOptions | |
from utils.get_opt import get_opt | |
from motion_loaders.dataset_motion_loader import get_dataset_motion_loader | |
from models.t2m_eval_wrapper import EvaluatorModelWrapper | |
import utils.eval_t2m as eval_t2m | |
from utils.fixseed import fixseed | |
import numpy as np | |
def load_vq_model(vq_opt): | |
# opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.vq_name, 'opt.txt') | |
vq_model = RVQVAE(vq_opt, | |
dim_pose, | |
vq_opt.nb_code, | |
vq_opt.code_dim, | |
vq_opt.output_emb_width, | |
vq_opt.down_t, | |
vq_opt.stride_t, | |
vq_opt.width, | |
vq_opt.depth, | |
vq_opt.dilation_growth_rate, | |
vq_opt.vq_act, | |
vq_opt.vq_norm) | |
ckpt = torch.load(pjoin(vq_opt.checkpoints_dir, vq_opt.dataset_name, vq_opt.name, 'model', 'net_best_fid.tar'), | |
map_location=opt.device) | |
model_key = 'vq_model' if 'vq_model' in ckpt else 'net' | |
vq_model.load_state_dict(ckpt[model_key]) | |
print(f'Loading VQ Model {vq_opt.name} Completed!') | |
return vq_model, vq_opt | |
def load_trans_model(model_opt, which_model): | |
t2m_transformer = MaskTransformer(code_dim=model_opt.code_dim, | |
cond_mode='text', | |
latent_dim=model_opt.latent_dim, | |
ff_size=model_opt.ff_size, | |
num_layers=model_opt.n_layers, | |
num_heads=model_opt.n_heads, | |
dropout=model_opt.dropout, | |
clip_dim=512, | |
cond_drop_prob=model_opt.cond_drop_prob, | |
clip_version=clip_version, | |
opt=model_opt) | |
ckpt = torch.load(pjoin(model_opt.checkpoints_dir, model_opt.dataset_name, model_opt.name, 'model', which_model), | |
map_location=opt.device) | |
model_key = 't2m_transformer' if 't2m_transformer' in ckpt else 'trans' | |
# print(ckpt.keys()) | |
missing_keys, unexpected_keys = t2m_transformer.load_state_dict(ckpt[model_key], strict=False) | |
assert len(unexpected_keys) == 0 | |
assert all([k.startswith('clip_model.') for k in missing_keys]) | |
print(f'Loading Mask Transformer {opt.name} from epoch {ckpt["ep"]}!') | |
return t2m_transformer | |
def load_res_model(res_opt): | |
res_opt.num_quantizers = vq_opt.num_quantizers | |
res_opt.num_tokens = vq_opt.nb_code | |
res_transformer = ResidualTransformer(code_dim=vq_opt.code_dim, | |
cond_mode='text', | |
latent_dim=res_opt.latent_dim, | |
ff_size=res_opt.ff_size, | |
num_layers=res_opt.n_layers, | |
num_heads=res_opt.n_heads, | |
dropout=res_opt.dropout, | |
clip_dim=512, | |
shared_codebook=vq_opt.shared_codebook, | |
cond_drop_prob=res_opt.cond_drop_prob, | |
# codebook=vq_model.quantizer.codebooks[0] if opt.fix_token_emb else None, | |
share_weight=res_opt.share_weight, | |
clip_version=clip_version, | |
opt=res_opt) | |
ckpt = torch.load(pjoin(res_opt.checkpoints_dir, res_opt.dataset_name, res_opt.name, 'model', 'net_best_fid.tar'), | |
map_location=opt.device) | |
missing_keys, unexpected_keys = res_transformer.load_state_dict(ckpt['res_transformer'], strict=False) | |
assert len(unexpected_keys) == 0 | |
assert all([k.startswith('clip_model.') for k in missing_keys]) | |
print(f'Loading Residual Transformer {res_opt.name} from epoch {ckpt["ep"]}!') | |
return res_transformer | |
if __name__ == '__main__': | |
parser = EvalT2MOptions() | |
opt = parser.parse() | |
fixseed(opt.seed) | |
opt.device = torch.device("cpu" if opt.gpu_id == -1 else "cuda:" + str(opt.gpu_id)) | |
torch.autograd.set_detect_anomaly(True) | |
dim_pose = 251 if opt.dataset_name == 'kit' else 263 | |
# out_dir = pjoin(opt.check) | |
root_dir = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.name) | |
model_dir = pjoin(root_dir, 'model') | |
out_dir = pjoin(root_dir, 'eval') | |
os.makedirs(out_dir, exist_ok=True) | |
out_path = pjoin(out_dir, "%s.log"%opt.ext) | |
f = open(pjoin(out_path), 'w') | |
model_opt_path = pjoin(root_dir, 'opt.txt') | |
model_opt = get_opt(model_opt_path, device=opt.device) | |
clip_version = 'ViT-B/32' | |
vq_opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, model_opt.vq_name, 'opt.txt') | |
vq_opt = get_opt(vq_opt_path, device=opt.device) | |
vq_model, vq_opt = load_vq_model(vq_opt) | |
model_opt.num_tokens = vq_opt.nb_code | |
model_opt.num_quantizers = vq_opt.num_quantizers | |
model_opt.code_dim = vq_opt.code_dim | |
res_opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.res_name, 'opt.txt') | |
res_opt = get_opt(res_opt_path, device=opt.device) | |
res_model = load_res_model(res_opt) | |
assert res_opt.vq_name == model_opt.vq_name | |
dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt' if opt.dataset_name == 'kit' \ | |
else 'checkpoints/t2m/Comp_v6_KLD005/opt.txt' | |
wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda')) | |
eval_wrapper = EvaluatorModelWrapper(wrapper_opt) | |
##### ---- Dataloader ---- ##### | |
opt.nb_joints = 21 if opt.dataset_name == 'kit' else 22 | |
eval_val_loader, _ = get_dataset_motion_loader(dataset_opt_path, 32, 'test', device=opt.device) | |
# model_dir = pjoin(opt.) | |
for file in os.listdir(model_dir): | |
if opt.which_epoch != "all" and opt.which_epoch not in file: | |
continue | |
print('loading checkpoint {}'.format(file)) | |
t2m_transformer = load_trans_model(model_opt, file) | |
t2m_transformer.eval() | |
vq_model.eval() | |
res_model.eval() | |
t2m_transformer.to(opt.device) | |
vq_model.to(opt.device) | |
res_model.to(opt.device) | |
fid = [] | |
div = [] | |
top1 = [] | |
top2 = [] | |
top3 = [] | |
matching = [] | |
mm = [] | |
repeat_time = 20 | |
for i in range(repeat_time): | |
with torch.no_grad(): | |
best_fid, best_div, Rprecision, best_matching, best_mm = \ | |
eval_t2m.evaluation_mask_transformer_test_plus_res(eval_val_loader, vq_model, res_model, t2m_transformer, | |
i, eval_wrapper=eval_wrapper, | |
time_steps=opt.time_steps, cond_scale=opt.cond_scale, | |
temperature=opt.temperature, topkr=opt.topkr, | |
force_mask=opt.force_mask, cal_mm=True) | |
fid.append(best_fid) | |
div.append(best_div) | |
top1.append(Rprecision[0]) | |
top2.append(Rprecision[1]) | |
top3.append(Rprecision[2]) | |
matching.append(best_matching) | |
mm.append(best_mm) | |
fid = np.array(fid) | |
div = np.array(div) | |
top1 = np.array(top1) | |
top2 = np.array(top2) | |
top3 = np.array(top3) | |
matching = np.array(matching) | |
mm = np.array(mm) | |
print(f'{file} final result:') | |
print(f'{file} final result:', file=f, flush=True) | |
msg_final = f"\tFID: {np.mean(fid):.3f}, conf. {np.std(fid) * 1.96 / np.sqrt(repeat_time):.3f}\n" \ | |
f"\tDiversity: {np.mean(div):.3f}, conf. {np.std(div) * 1.96 / np.sqrt(repeat_time):.3f}\n" \ | |
f"\tTOP1: {np.mean(top1):.3f}, conf. {np.std(top1) * 1.96 / np.sqrt(repeat_time):.3f}, TOP2. {np.mean(top2):.3f}, conf. {np.std(top2) * 1.96 / np.sqrt(repeat_time):.3f}, TOP3. {np.mean(top3):.3f}, conf. {np.std(top3) * 1.96 / np.sqrt(repeat_time):.3f}\n" \ | |
f"\tMatching: {np.mean(matching):.3f}, conf. {np.std(matching) * 1.96 / np.sqrt(repeat_time):.3f}\n" \ | |
f"\tMultimodality:{np.mean(mm):.3f}, conf.{np.std(mm) * 1.96 / np.sqrt(repeat_time):.3f}\n\n" | |
# logger.info(msg_final) | |
print(msg_final) | |
print(msg_final, file=f, flush=True) | |
f.close() | |
# python eval_t2m_trans.py --name t2m_nlayer8_nhead6_ld384_ff1024_cdp0.1_vq --dataset_name t2m --gpu_id 3 --cond_scale 4 --time_steps 18 --temperature 1 --topkr 0.9 --gumbel_sample --ext cs4_ts18_tau1_topkr0.9_gs |