Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import pdfplumber | |
| import pandas as pd | |
| from io import BytesIO | |
| def extract_tables_from_pdf(pdf_file): | |
| tables = [] | |
| with pdfplumber.open(pdf_file) as pdf: | |
| for page in pdf.pages: | |
| extracted_tables = page.extract_tables() | |
| for table in extracted_tables: | |
| tables.append(pd.DataFrame(table)) | |
| if not tables: | |
| return None | |
| # Concatenate all tables into one DataFrame | |
| final_df = pd.concat(tables, ignore_index=True) | |
| # Set first row as column headers (if applicable) | |
| final_df.columns = final_df.iloc[0] # First row as headers | |
| final_df = final_df[1:].reset_index(drop=True) | |
| return final_df | |
| def convert_to_excel(dataframe): | |
| output = BytesIO() | |
| with pd.ExcelWriter(output, engine='xlsxwriter') as writer: | |
| dataframe.to_excel(writer, index=False, sheet_name='Sheet1') | |
| output.seek(0) | |
| return output | |
| # Streamlit UI | |
| st.title("PDF to Excel Converter") | |
| st.write("Upload a PDF file with tabular data, and it will be converted into an Excel file.") | |
| uploaded_file = st.file_uploader("Choose a PDF file", type=["pdf"]) | |
| if uploaded_file is not None: | |
| with st.spinner("Extracting tables from PDF..."): | |
| df = extract_tables_from_pdf(uploaded_file) | |
| if df is not None: | |
| st.write("### Extracted Table Preview") | |
| st.dataframe(df) | |
| excel_data = convert_to_excel(df) | |
| st.download_button(label="Download Excel File", | |
| data=excel_data, | |
| file_name="converted.xlsx", | |
| mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet") | |
| else: | |
| st.error("No tables found in the PDF.") | |