|
import os |
|
import io |
|
import base64 |
|
import gradio as gr |
|
import requests |
|
import pandas as pd |
|
from dotenv import load_dotenv |
|
from smolagents import CodeAgent, OpenAIServerModel, DuckDuckGoSearchTool |
|
from openai import OpenAI |
|
|
|
from PIL import Image, UnidentifiedImageError |
|
|
|
load_dotenv() |
|
|
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) |
|
|
|
|
|
|
|
|
|
class BasicAgent: |
|
def __init__(self): |
|
print("BasicAgent initialized.") |
|
|
|
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") |
|
if not OPENAI_API_KEY: |
|
raise RuntimeError("OPENAI_API_KEY environment variable is not set") |
|
|
|
OPENAI_MODEL_ID = os.getenv("OPENAI_MODEL_ID", "gpt-4o") |
|
|
|
self.agent = CodeAgent( |
|
tools=[DuckDuckGoSearchTool()], |
|
model=OpenAIServerModel(model_id=OPENAI_MODEL_ID, api_key=OPENAI_API_KEY), |
|
additional_authorized_imports=["bs4", "requests"], |
|
max_steps=10, |
|
) |
|
|
|
def __call__(self, question: str, file_data: dict = None) -> str: |
|
print(f"Agent received question (first 50 chars): {question[:50]}...") |
|
try: |
|
images = None |
|
if file_data is not None: |
|
file_data = self.handle_file_data(file_data) |
|
if file_data is not None: |
|
images = file_data["images"] |
|
if file_data["text"] is not None: |
|
question += "\n\n" + file_data["text"] |
|
|
|
result = self.agent.run(question, images=images) |
|
|
|
print(f"Agent returned answer: {result}") |
|
return result |
|
except Exception as e: |
|
print(f"Error during CodeAgent.run: {e}") |
|
return f"Error from CodeAgent: {e}" |
|
|
|
def handle_file_data(self, file_data: dict) -> dict: |
|
if file_data["type"] in ["excel", "csv"]: |
|
return {"images": None, "text": file_data["data"]} |
|
elif file_data["type"] == "image": |
|
return {"images": [file_data["data"]], "text": None} |
|
elif file_data["type"] == "text": |
|
return {"images": None, "text": file_data["data"]} |
|
elif file_data["type"] == "audio": |
|
return None |
|
else: |
|
return None |
|
|
|
|
|
def load_file_from_response(response): |
|
""" |
|
Loads and identifies file content from an HTTP response based on its content-type. |
|
Returns a dictionary with 'type' and 'data' keys. |
|
""" |
|
content_type = response.headers.get("content-type", "").lower() |
|
content_bytes = response.content |
|
|
|
try: |
|
if "application/json" in content_type: |
|
if "No file path" in response.json()["detail"]: |
|
return None |
|
return {"type": "json", "data": response.json()} |
|
|
|
elif "text/csv" in content_type: |
|
return {"type": "csv", "data": pd.read_csv(io.StringIO(response.text))} |
|
|
|
elif "text/plain" in content_type or "text/x-python" in content_type: |
|
return {"type": "text", "data": response.text} |
|
|
|
elif "image/" in content_type: |
|
return {"type": "image", "data": Image.open(io.BytesIO(content_bytes))} |
|
|
|
elif "audio/" in content_type: |
|
|
|
transcript = client.audio.transcriptions.create( |
|
model="whisper-1", file=io.BytesIO(content_bytes) |
|
) |
|
return {"type": "text", "data": transcript.get("text", "")} |
|
|
|
elif "application/octet-stream" in content_type: |
|
|
|
try: |
|
excel_data = pd.read_excel(io.BytesIO(content_bytes)) |
|
return {"type": "excel", "data": excel_data} |
|
except Exception as e: |
|
print(f"Error loading excel") |
|
|
|
|
|
try: |
|
img = Image.open(io.BytesIO(content_bytes)) |
|
return {"type": "image", "data": img} |
|
except UnidentifiedImageError: |
|
print(f"Error loading image") |
|
|
|
|
|
try: |
|
|
|
transcript = client.audio.transcriptions.create( |
|
model="whisper-1", file=io.BytesIO(content_bytes) |
|
) |
|
return {"type": "text", "data": transcript.get("text", "")} |
|
except Exception as e: |
|
print(f"Error transcribing audio") |
|
|
|
|
|
try: |
|
text = content_bytes.decode("utf-8") |
|
return {"type": "text", "data": text} |
|
except UnicodeDecodeError: |
|
print(f"Error decoding UTF-8") |
|
|
|
return {"type": "binary", "data": content_bytes} |
|
|
|
else: |
|
print(f"⚠️ Unhandled content type: {content_type}") |
|
return {"type": "unknown", "data": content_bytes} |
|
|
|
except Exception as e: |
|
print(f"❌ Failed to process content: {e}") |
|
return {"type": "error", "data": str(e)} |
|
|
|
|
|
def load_pil_image(image_path: str) -> Image.Image: |
|
"""Loads an image from disk for processing by GPT-4O.""" |
|
return Image.open(image_path) |
|
|
|
|
|
def load_image(image_path: str) -> str: |
|
"""Loads image and encodes it as base64 string for GPT-4o.""" |
|
with open(image_path, "rb") as f: |
|
encoded = base64.b64encode(f.read()).decode("utf-8") |
|
return f"data:image/jpeg;base64,{encoded}" |
|
|
|
|
|
def describe_image(image_path: str) -> str: |
|
"""Sends image directly to GPT-4o to describe it.""" |
|
image_base64 = load_image(image_path) |
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "text", "text": "Describe this image."}, |
|
{"type": "image_url", "image_url": {"url": image_base64}}, |
|
], |
|
} |
|
] |
|
response = client.chat.completions.create(model="gpt-4o", messages=messages) |
|
return response.choices[0].message.content |
|
|
|
|
|
def run_and_submit_all(profile: gr.OAuthProfile | None): |
|
""" |
|
Fetches all questions, runs the BasicAgent on them, submits all answers, |
|
and displays the results. |
|
""" |
|
|
|
space_id = os.getenv("SPACE_ID") |
|
|
|
if profile: |
|
username = f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
files_url = f"{api_url}/files" |
|
|
|
|
|
try: |
|
agent = BasicAgent() |
|
except Exception as e: |
|
print(f"Error instantiating agent: {e}") |
|
return f"Error initializing agent: {e}", None |
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
print(agent_code) |
|
|
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
print("Fetched questions list is empty.") |
|
return "Fetched questions list is empty or invalid format.", None |
|
print(f"Fetched {len(questions_data)} questions.") |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching questions: {e}") |
|
return f"Error fetching questions: {e}", None |
|
except requests.exceptions.JSONDecodeError as e: |
|
print(f"Error decoding JSON response from questions endpoint: {e}") |
|
print(f"Response text: {response.text[:500]}") |
|
return f"Error decoding server response for questions: {e}", None |
|
except Exception as e: |
|
print(f"An unexpected error occurred fetching questions: {e}") |
|
return f"An unexpected error occurred fetching questions: {e}", None |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
print(f"Running agent on {len(questions_data)} questions...") |
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
if not task_id or question_text is None: |
|
print(f"Skipping item with missing task_id or question: {item}") |
|
continue |
|
|
|
file_data = load_file_from_response( |
|
requests.get(f"{files_url}/{task_id}", timeout=15) |
|
) |
|
|
|
try: |
|
submitted_answer = agent(question_text, file_data) |
|
answers_payload.append( |
|
{"task_id": task_id, "submitted_answer": submitted_answer} |
|
) |
|
results_log.append( |
|
{ |
|
"Task ID": task_id, |
|
"Question": question_text, |
|
"Submitted Answer": submitted_answer, |
|
} |
|
) |
|
except Exception as e: |
|
print(f"Error running agent on task {task_id}: {e}") |
|
results_log.append( |
|
{ |
|
"Task ID": task_id, |
|
"Question": question_text, |
|
"Submitted Answer": f"AGENT ERROR: {e}", |
|
} |
|
) |
|
|
|
if not answers_payload: |
|
print("Agent did not produce any answers to submit.") |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = { |
|
"username": username.strip(), |
|
"agent_code": agent_code, |
|
"answers": answers_payload, |
|
} |
|
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." |
|
print(status_update) |
|
|
|
|
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
print("Submission successful.") |
|
results_df = pd.DataFrame(results_log) |
|
return final_status, results_df |
|
except requests.exceptions.HTTPError as e: |
|
error_detail = f"Server responded with status {e.response.status_code}." |
|
try: |
|
error_json = e.response.json() |
|
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" |
|
except requests.exceptions.JSONDecodeError: |
|
error_detail += f" Response: {e.response.text[:500]}" |
|
status_message = f"Submission Failed: {error_detail}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.Timeout: |
|
status_message = "Submission Failed: The request timed out." |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.RequestException as e: |
|
status_message = f"Submission Failed: Network error - {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except Exception as e: |
|
status_message = f"An unexpected error occurred during submission: {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Basic Agent Evaluation Runner") |
|
gr.Markdown( |
|
""" |
|
**Instructions:** |
|
|
|
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... |
|
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. |
|
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. |
|
|
|
--- |
|
**Disclaimers:** |
|
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). |
|
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. |
|
""" |
|
) |
|
|
|
gr.LoginButton() |
|
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
|
|
status_output = gr.Textbox( |
|
label="Run Status / Submission Result", lines=5, interactive=False |
|
) |
|
|
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) |
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-" * 30 + " App Starting " + "-" * 30) |
|
|
|
space_host_startup = os.getenv("SPACE_HOST") |
|
space_id_startup = os.getenv("SPACE_ID") |
|
|
|
if space_host_startup: |
|
print(f"✅ SPACE_HOST found: {space_host_startup}") |
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
else: |
|
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") |
|
|
|
if space_id_startup: |
|
print(f"✅ SPACE_ID found: {space_id_startup}") |
|
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") |
|
print( |
|
f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main" |
|
) |
|
else: |
|
print( |
|
"ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined." |
|
) |
|
|
|
print("-" * (60 + len(" App Starting ")) + "\n") |
|
|
|
print("Launching Gradio Interface for Basic Agent Evaluation...") |
|
demo.launch(debug=True, share=False) |
|
|