Max Reimann
commited on
Commit
·
85cce87
1
Parent(s):
f0f40d2
Integrate servertask into demo app, add dockerfile
Browse files- .gitignore +2 -0
- Dockerfile_worker +14 -0
- Whitebox_style_transfer.py +16 -25
- demo_config.py +2 -1
- pages/test.py +0 -119
- tasks.py +135 -0
- worker/requirements.txt +1 -0
- worker/serve.py +5 -3
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
worker/img_received
|
2 |
+
worker/result
|
Dockerfile_worker
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM pytorch/pytorch:1.12.0-cuda11.3-cudnn8-runtime
|
2 |
+
|
3 |
+
WORKDIR /usr/app
|
4 |
+
ADD worker/requirements.txt .
|
5 |
+
RUN pip install -r requirements.txt
|
6 |
+
|
7 |
+
ADD wise .
|
8 |
+
|
9 |
+
WORKDIR /usr/app/worker
|
10 |
+
ADD worker/serve.py .
|
11 |
+
|
12 |
+
EXPOSE 8600
|
13 |
+
|
14 |
+
CMD ["python", "serve.py"]
|
Whitebox_style_transfer.py
CHANGED
@@ -9,6 +9,7 @@ import requests
|
|
9 |
import torch
|
10 |
import torch.nn.functional as F
|
11 |
from PIL import Image
|
|
|
12 |
|
13 |
PACKAGE_PARENT = 'wise'
|
14 |
SCRIPT_DIR = os.path.dirname(os.path.realpath(os.path.join(os.getcwd(), os.path.expanduser(__file__))))
|
@@ -144,34 +145,15 @@ def optimize(effect, preset, result_image_placeholder):
|
|
144 |
content = st.session_state["Content_im"]
|
145 |
style = st.session_state["Style_im"]
|
146 |
result_image_placeholder.text("<- Custom content/style needs to be style transferred")
|
147 |
-
st.sidebar.
|
148 |
optimize_button = st.sidebar.button("Optimize Style Transfer")
|
149 |
if optimize_button:
|
150 |
-
if HUGGING_FACE:
|
151 |
-
result_image_placeholder.warning("NST optimization is currently disabled in this HuggingFace Space because it takes ~5min to optimize. To try it out, please clone the repo and change the huggingface variable in demo_config.py")
|
152 |
-
st.stop()
|
153 |
-
|
154 |
-
result_image_placeholder.text("Executing NST to create reference image..")
|
155 |
-
base_dir = f"result/{datetime.datetime.now().strftime(r'%Y-%m-%d %H.%Mh %Ss')}"
|
156 |
-
os.makedirs(base_dir)
|
157 |
-
with st.spinner(text="Running NST"):
|
158 |
-
reference = strotss(pil_resize_long_edge_to(content, 1024),
|
159 |
-
pil_resize_long_edge_to(style, 1024), content_weight=16.0,
|
160 |
-
device=torch.device("cuda"), space="uniform")
|
161 |
-
progress_bar = result_image_placeholder.progress(0.0)
|
162 |
-
ref_save_path = os.path.join(base_dir, "reference.jpg")
|
163 |
-
content_save_path = os.path.join(base_dir, "content.jpg")
|
164 |
-
resize_to = 720
|
165 |
-
reference = pil_resize_long_edge_to(reference, resize_to)
|
166 |
-
reference.save(ref_save_path)
|
167 |
-
content.save(content_save_path)
|
168 |
-
ST_CONFIG["n_iterations"] = 300
|
169 |
with st.spinner(text="Optimizing parameters.."):
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
return
|
175 |
else:
|
176 |
if not "result_vp" in st.session_state:
|
177 |
st.stop()
|
@@ -224,6 +206,15 @@ coll2.header("Global Edits")
|
|
224 |
result_image_placeholder = coll1.empty()
|
225 |
result_image_placeholder.markdown("## loading..")
|
226 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
img_choice_panel("Content", content_urls, "portrait", expanded=True)
|
228 |
img_choice_panel("Style", style_urls, "starry_night", expanded=True)
|
229 |
|
|
|
9 |
import torch
|
10 |
import torch.nn.functional as F
|
11 |
from PIL import Image
|
12 |
+
import time
|
13 |
|
14 |
PACKAGE_PARENT = 'wise'
|
15 |
SCRIPT_DIR = os.path.dirname(os.path.realpath(os.path.join(os.getcwd(), os.path.expanduser(__file__))))
|
|
|
145 |
content = st.session_state["Content_im"]
|
146 |
style = st.session_state["Style_im"]
|
147 |
result_image_placeholder.text("<- Custom content/style needs to be style transferred")
|
148 |
+
st.sidebar.warning("Note: Optimizing takes up to 5 minutes.")
|
149 |
optimize_button = st.sidebar.button("Optimize Style Transfer")
|
150 |
if optimize_button:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
with st.spinner(text="Optimizing parameters.."):
|
152 |
+
if HUGGING_FACE:
|
153 |
+
optimize_on_server(content, style, result_image_placeholder)
|
154 |
+
else:
|
155 |
+
optimize_params(effect, preset, content, style, result_image_placeholder)
|
156 |
+
return st.session_state["effect_input"], st.session_state["result_vp"]
|
157 |
else:
|
158 |
if not "result_vp" in st.session_state:
|
159 |
st.stop()
|
|
|
206 |
result_image_placeholder = coll1.empty()
|
207 |
result_image_placeholder.markdown("## loading..")
|
208 |
|
209 |
+
from tasks import optimize_on_server, optimize_params, monitor_task
|
210 |
+
|
211 |
+
if "current_server_task_id" not in st.session_state:
|
212 |
+
st.session_state['current_server_task_id'] = None
|
213 |
+
|
214 |
+
if HUGGING_FACE and st.session_state['current_server_task_id'] is not None:
|
215 |
+
with st.spinner(text="Optimizing parameters.."):
|
216 |
+
monitor_task(result_image_placeholder)
|
217 |
+
|
218 |
img_choice_panel("Content", content_urls, "portrait", expanded=True)
|
219 |
img_choice_panel("Style", style_urls, "starry_night", expanded=True)
|
220 |
|
demo_config.py
CHANGED
@@ -1 +1,2 @@
|
|
1 |
-
HUGGING_FACE=True # if run in hugging face.
|
|
|
|
1 |
+
HUGGING_FACE=True # if run in hugging face. Huggingface uses extra server task for optim
|
2 |
+
WORKER_URL="http://mr2632.byod.hpi.de:8600"
|
pages/test.py
DELETED
@@ -1,119 +0,0 @@
|
|
1 |
-
import base64
|
2 |
-
import datetime
|
3 |
-
import os
|
4 |
-
import sys
|
5 |
-
from io import BytesIO
|
6 |
-
from pathlib import Path
|
7 |
-
import numpy as np
|
8 |
-
import requests
|
9 |
-
import torch
|
10 |
-
import torch.nn.functional as F
|
11 |
-
from PIL import Image
|
12 |
-
import json
|
13 |
-
import time
|
14 |
-
|
15 |
-
PACKAGE_PARENT = 'wise'
|
16 |
-
SCRIPT_DIR = os.path.dirname(os.path.realpath(os.path.join(os.getcwd(), os.path.expanduser(__file__))))
|
17 |
-
sys.path.append(os.path.normpath(os.path.join(SCRIPT_DIR, PACKAGE_PARENT)))
|
18 |
-
|
19 |
-
import streamlit as st
|
20 |
-
from streamlit.logger import get_logger
|
21 |
-
from st_click_detector import click_detector
|
22 |
-
import streamlit.components.v1 as components
|
23 |
-
from streamlit.source_util import get_pages
|
24 |
-
from streamlit_extras.switch_page_button import switch_page
|
25 |
-
|
26 |
-
import helpers.session_state as session_state
|
27 |
-
from parameter_optimization.strotss_org import strotss, pil_resize_long_edge_to
|
28 |
-
from helpers import torch_to_np, np_to_torch
|
29 |
-
from effects import get_default_settings, MinimalPipelineEffect
|
30 |
-
|
31 |
-
st.set_page_config(layout="wide")
|
32 |
-
BASE_URL = "https://ivpg.hpi3d.de/wise/wise-demo/images/"
|
33 |
-
LOGGER = get_logger(__name__)
|
34 |
-
|
35 |
-
|
36 |
-
def upload_form(imgtype):
|
37 |
-
with st.form(imgtype + "-form", clear_on_submit=True):
|
38 |
-
uploaded_im = st.file_uploader(f"Load {imgtype} image:", type=["png", "jpg"], )
|
39 |
-
upload_pressed = st.form_submit_button("Upload")
|
40 |
-
|
41 |
-
if upload_pressed and uploaded_im is not None:
|
42 |
-
img = Image.open(uploaded_im)
|
43 |
-
buffered = BytesIO()
|
44 |
-
img.save(buffered, format="JPEG")
|
45 |
-
encoded = base64.b64encode(buffered.getvalue()).decode()
|
46 |
-
# session_state.get(uploaded_im=img, content_render_src=f"data:image/jpeg;base64,{encoded}")
|
47 |
-
session_state.get(**{f"{imgtype}_im": img, f"{imgtype}_render_src": f"data:image/jpeg;base64,{encoded}",
|
48 |
-
f"{imgtype}_id": "uploaded"})
|
49 |
-
st.session_state["action"] = "uploaded"
|
50 |
-
st.write("uploaded.")
|
51 |
-
|
52 |
-
upload_form("Content")
|
53 |
-
upload_form("Style")
|
54 |
-
content = st.session_state["Content_im"]
|
55 |
-
style = st.session_state["Style_im"]
|
56 |
-
base_url = "http://mr2632.byod.hpi.de:5000"
|
57 |
-
|
58 |
-
if content is not None and style is not None:
|
59 |
-
optimize_button = st.sidebar.button("Optimize Style Transfer")
|
60 |
-
if optimize_button:
|
61 |
-
url = base_url + "/upload"
|
62 |
-
content_path=f"/tmp/content-wise-uploaded{str(datetime.datetime.timestamp(datetime.datetime.now()))}.jpg"
|
63 |
-
style_path=f"/tmp/content-wise-uploaded{str(datetime.datetime.timestamp(datetime.datetime.now()))}.jpg"
|
64 |
-
content = pil_resize_long_edge_to(content, 1024)
|
65 |
-
content.save(content_path)
|
66 |
-
style = pil_resize_long_edge_to(style, 1024)
|
67 |
-
style.save(style_path)
|
68 |
-
files = {'style-image': open(style_path, "rb"), "content-image": open(content_path, "rb")}
|
69 |
-
print("start-optimizing")
|
70 |
-
task_id_res = requests.post(url, files=files)
|
71 |
-
if task_id_res.status_code != 200:
|
72 |
-
st.error(task_id_res.content)
|
73 |
-
st.stop()
|
74 |
-
else:
|
75 |
-
task_id = task_id_res.json()['task_id']
|
76 |
-
|
77 |
-
progress_bar = st.empty()
|
78 |
-
with st.spinner(text="Optimizing parameters.."):
|
79 |
-
started_time = time.time()
|
80 |
-
while True:
|
81 |
-
time.sleep(3)
|
82 |
-
status = requests.get(base_url+"/get_status", params={"task_id": task_id})
|
83 |
-
if status.status_code != 200:
|
84 |
-
print("get_status got status_code", status.status_code)
|
85 |
-
st.warning(status.content)
|
86 |
-
continue
|
87 |
-
status = status.json()
|
88 |
-
print(status)
|
89 |
-
if status["status"] != "running" and status["status"] != "queued" :
|
90 |
-
if status["msg"] != "":
|
91 |
-
st.error(status["msg"])
|
92 |
-
break
|
93 |
-
elif status["status"] == "queued":
|
94 |
-
started_time = time.time()
|
95 |
-
queue_length = requests.get(base_url+"/queue_length").json()
|
96 |
-
progress_bar.write(f"There are {queue_length['length']} tasks in the queue")
|
97 |
-
elif status["progress"] == 0.0:
|
98 |
-
progressed = min(0.5 * (time.time() - started_time) / 80.0, 0.5) #estimate 80s for strotts
|
99 |
-
progress_bar.progress(progressed)
|
100 |
-
else:
|
101 |
-
progress_bar.progress(min(0.5 + status["progress"] / 2.0, 1.0))
|
102 |
-
vp_res = requests.get(base_url+"/get_vp", params={"task_id": task_id})
|
103 |
-
if vp_res.status_code != 200:
|
104 |
-
st.warning("got status" + str(vp_res.status_code))
|
105 |
-
vp_res.raise_for_status()
|
106 |
-
else:
|
107 |
-
vp = np.load(BytesIO(vp_res.content))["vp"]
|
108 |
-
print("received vp from server")
|
109 |
-
print("got numpy array", vp.shape)
|
110 |
-
vp = torch.from_numpy(vp).cuda()
|
111 |
-
|
112 |
-
effect, preset, param_set = get_default_settings("minimal_pipeline")
|
113 |
-
effect.enable_checkpoints()
|
114 |
-
effect.cuda()
|
115 |
-
content_cuda = np_to_torch(content).cuda()
|
116 |
-
with torch.no_grad():
|
117 |
-
result_cuda = effect(content_cuda, vp)
|
118 |
-
img_res = Image.fromarray((torch_to_np(result_cuda) * 255.0).astype(np.uint8))
|
119 |
-
st.image(img_res)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tasks.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import datetime
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
from io import BytesIO
|
6 |
+
from pathlib import Path
|
7 |
+
import numpy as np
|
8 |
+
import requests
|
9 |
+
import torch
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from PIL import Image
|
12 |
+
import time
|
13 |
+
import streamlit as st
|
14 |
+
from demo_config import HUGGING_FACE, WORKER_URL
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
PACKAGE_PARENT = 'wise'
|
19 |
+
SCRIPT_DIR = os.path.dirname(os.path.realpath(os.path.join(os.getcwd(), os.path.expanduser(__file__))))
|
20 |
+
sys.path.append(os.path.normpath(os.path.join(SCRIPT_DIR, PACKAGE_PARENT)))
|
21 |
+
|
22 |
+
from parameter_optimization.parametric_styletransfer import single_optimize
|
23 |
+
from parameter_optimization.parametric_styletransfer import CONFIG as ST_CONFIG
|
24 |
+
from parameter_optimization.strotss_org import strotss, pil_resize_long_edge_to
|
25 |
+
from helpers import torch_to_np, np_to_torch
|
26 |
+
|
27 |
+
def retrieve_for_results_from_server():
|
28 |
+
task_id = st.session_state['current_server_task_id']
|
29 |
+
vp_res = requests.get(WORKER_URL+"/get_vp", params={"task_id": task_id})
|
30 |
+
image_res = requests.get(WORKER_URL+"/get_image", params={"task_id": task_id})
|
31 |
+
if vp_res.status_code != 200 or image_res.status_code != 200:
|
32 |
+
st.warning("got status for " + WORKER_URL+"/get_vp" + str(vp_res.status_code))
|
33 |
+
st.warning("got status for " + WORKER_URL+"/image_res" + str(image_res.status_code))
|
34 |
+
st.session_state['current_server_task_id'] = None
|
35 |
+
vp_res.raise_for_status()
|
36 |
+
image_res.raise_for_status()
|
37 |
+
else:
|
38 |
+
st.session_state['current_server_task_id'] = None
|
39 |
+
vp = np.load(BytesIO(vp_res.content))["vp"]
|
40 |
+
print("received vp from server")
|
41 |
+
print("got numpy array", vp.shape)
|
42 |
+
vp = torch.from_numpy(vp).cuda()
|
43 |
+
image = Image.open(BytesIO(image_res.content))
|
44 |
+
print("received image from server")
|
45 |
+
image = np_to_torch(np.asarray(image)).cuda()
|
46 |
+
|
47 |
+
st.session_state["effect_input"] = image
|
48 |
+
st.session_state["result_vp"] = vp
|
49 |
+
|
50 |
+
|
51 |
+
def monitor_task(progress_placeholder):
|
52 |
+
task_id = st.session_state['current_server_task_id']
|
53 |
+
|
54 |
+
started_time = time.time()
|
55 |
+
retries = 3
|
56 |
+
while True:
|
57 |
+
status = requests.get(WORKER_URL+"/get_status", params={"task_id": task_id})
|
58 |
+
if status.status_code != 200:
|
59 |
+
print("get_status got status_code", status.status_code)
|
60 |
+
st.warning(status.content)
|
61 |
+
retries -= 1
|
62 |
+
if retries == 0:
|
63 |
+
return
|
64 |
+
else:
|
65 |
+
time.sleep(2)
|
66 |
+
continue
|
67 |
+
status = status.json()
|
68 |
+
print(status)
|
69 |
+
if status["status"] != "running" and status["status"] != "queued" :
|
70 |
+
if status["msg"] != "":
|
71 |
+
print("got error for task", task_id, ":", status["msg"])
|
72 |
+
progress_placeholder.error(status["msg"])
|
73 |
+
st.session_state['current_server_task_id'] = None
|
74 |
+
st.stop()
|
75 |
+
if status["status"] == "finished":
|
76 |
+
retrieve_for_results_from_server()
|
77 |
+
return
|
78 |
+
elif status["status"] == "queued":
|
79 |
+
started_time = time.time()
|
80 |
+
queue_length = requests.get(WORKER_URL+"/queue_length").json()
|
81 |
+
progress_placeholder.write(f"There are {queue_length['length']} tasks in the queue")
|
82 |
+
elif status["progress"] == 0.0:
|
83 |
+
progressed = min(0.5 * (time.time() - started_time) / 80.0, 0.5) #estimate 80s for strotts
|
84 |
+
progress_placeholder.progress(progressed)
|
85 |
+
else:
|
86 |
+
progress_placeholder.progress(min(0.5 + status["progress"] / 2.0, 1.0))
|
87 |
+
|
88 |
+
time.sleep(2)
|
89 |
+
|
90 |
+
|
91 |
+
def optimize_on_server(content, style, result_image_placeholder):
|
92 |
+
url = WORKER_URL + "/upload"
|
93 |
+
content_path=f"/tmp/content-wise-uploaded{str(datetime.datetime.timestamp(datetime.datetime.now()))}.jpg"
|
94 |
+
style_path=f"/tmp/content-wise-uploaded{str(datetime.datetime.timestamp(datetime.datetime.now()))}.jpg"
|
95 |
+
asp_c, asp_s = content.height / content.width, style.height / style.width
|
96 |
+
if any(a < 0.5 or a > 2.0 for a in (asp_c, asp_s)):
|
97 |
+
result_image_placeholder.error('aspect ratio must be <= 2')
|
98 |
+
st.stop()
|
99 |
+
content = pil_resize_long_edge_to(content, 1024)
|
100 |
+
content.save(content_path)
|
101 |
+
style = pil_resize_long_edge_to(style, 1024)
|
102 |
+
style.save(style_path)
|
103 |
+
files = {'style-image': open(style_path, "rb"), "content-image": open(content_path, "rb")}
|
104 |
+
print("start-optimizing")
|
105 |
+
task_id_res = requests.post(url, files=files)
|
106 |
+
if task_id_res.status_code != 200:
|
107 |
+
result_image_placeholder.error(task_id_res.content)
|
108 |
+
st.stop()
|
109 |
+
else:
|
110 |
+
task_id = task_id_res.json()['task_id']
|
111 |
+
st.session_state['current_server_task_id'] = task_id
|
112 |
+
|
113 |
+
monitor_task(result_image_placeholder)
|
114 |
+
|
115 |
+
def optimize_params(effect, preset, content, style, result_image_placeholder):
|
116 |
+
result_image_placeholder.text("Executing NST to create reference image..")
|
117 |
+
base_dir = f"result/{datetime.datetime.now().strftime(r'%Y-%m-%d %H.%Mh %Ss')}"
|
118 |
+
os.makedirs(base_dir)
|
119 |
+
reference = strotss(pil_resize_long_edge_to(content, 1024),
|
120 |
+
pil_resize_long_edge_to(style, 1024), content_weight=16.0,
|
121 |
+
device=torch.device("cuda"), space="uniform")
|
122 |
+
progress_bar = result_image_placeholder.progress(0.0)
|
123 |
+
ref_save_path = os.path.join(base_dir, "reference.jpg")
|
124 |
+
content_save_path = os.path.join(base_dir, "content.jpg")
|
125 |
+
resize_to = 720
|
126 |
+
reference = pil_resize_long_edge_to(reference, resize_to)
|
127 |
+
reference.save(ref_save_path)
|
128 |
+
content.save(content_save_path)
|
129 |
+
ST_CONFIG["n_iterations"] = 300
|
130 |
+
|
131 |
+
vp, content_img_cuda = single_optimize(effect, preset, "l1", content_save_path, str(ref_save_path),
|
132 |
+
write_video=False, base_dir=base_dir,
|
133 |
+
iter_callback=lambda i: progress_bar.progress(
|
134 |
+
float(i) / ST_CONFIG["n_iterations"]))
|
135 |
+
st.session_state["effect_input"], st.session_state["result_vp"] = content_img_cuda.detach(), vp.cuda().detach()
|
worker/requirements.txt
CHANGED
@@ -3,6 +3,7 @@ imageio-ffmpeg
|
|
3 |
scipy
|
4 |
Pillow
|
5 |
numpy
|
|
|
6 |
--extra-index-url https://download.pytorch.org/whl/cu113
|
7 |
torch
|
8 |
torchvision
|
|
|
3 |
scipy
|
4 |
Pillow
|
5 |
numpy
|
6 |
+
matplotlib
|
7 |
--extra-index-url https://download.pytorch.org/whl/cu113
|
8 |
torch
|
9 |
torchvision
|
worker/serve.py
CHANGED
@@ -175,10 +175,12 @@ class StylerQueue:
|
|
175 |
def queue_task(self, *args):
|
176 |
global total_task_count
|
177 |
total_task_count += 1
|
178 |
-
|
|
|
|
|
179 |
self.queued_tasks.append(task)
|
180 |
|
181 |
-
return
|
182 |
|
183 |
def get_task(self, task_id):
|
184 |
if self.running_task is not None and self.running_task.task_id == task_id:
|
@@ -281,4 +283,4 @@ def get_vp():
|
|
281 |
|
282 |
|
283 |
if __name__ == '__main__':
|
284 |
-
app.run(debug=False, host="0.0.0.0",port=
|
|
|
175 |
def queue_task(self, *args):
|
176 |
global total_task_count
|
177 |
total_task_count += 1
|
178 |
+
task_id = abs(hash(str(time.time())))
|
179 |
+
print("queued task num. ", total_task_count, "with ID", task_id)
|
180 |
+
task = StyleTask(task_id, *args)
|
181 |
self.queued_tasks.append(task)
|
182 |
|
183 |
+
return task_id
|
184 |
|
185 |
def get_task(self, task_id):
|
186 |
if self.running_task is not None and self.running_task.task_id == task_id:
|
|
|
283 |
|
284 |
|
285 |
if __name__ == '__main__':
|
286 |
+
app.run(debug=False, host="0.0.0.0",port=8600)
|