Max Reimann
commited on
Commit
·
f0f40d2
1
Parent(s):
4b98912
add optimization server test
Browse files- Whitebox_style_transfer.py +1 -0
- pages/test.py +119 -0
- worker/requirements.txt +10 -0
- worker/serve.py +284 -0
Whitebox_style_transfer.py
CHANGED
@@ -144,6 +144,7 @@ def optimize(effect, preset, result_image_placeholder):
|
|
144 |
content = st.session_state["Content_im"]
|
145 |
style = st.session_state["Style_im"]
|
146 |
result_image_placeholder.text("<- Custom content/style needs to be style transferred")
|
|
|
147 |
optimize_button = st.sidebar.button("Optimize Style Transfer")
|
148 |
if optimize_button:
|
149 |
if HUGGING_FACE:
|
|
|
144 |
content = st.session_state["Content_im"]
|
145 |
style = st.session_state["Style_im"]
|
146 |
result_image_placeholder.text("<- Custom content/style needs to be style transferred")
|
147 |
+
st.sidebar.info("Note: Optimizing takes up to 5 minutes.")
|
148 |
optimize_button = st.sidebar.button("Optimize Style Transfer")
|
149 |
if optimize_button:
|
150 |
if HUGGING_FACE:
|
pages/test.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import datetime
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
from io import BytesIO
|
6 |
+
from pathlib import Path
|
7 |
+
import numpy as np
|
8 |
+
import requests
|
9 |
+
import torch
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from PIL import Image
|
12 |
+
import json
|
13 |
+
import time
|
14 |
+
|
15 |
+
PACKAGE_PARENT = 'wise'
|
16 |
+
SCRIPT_DIR = os.path.dirname(os.path.realpath(os.path.join(os.getcwd(), os.path.expanduser(__file__))))
|
17 |
+
sys.path.append(os.path.normpath(os.path.join(SCRIPT_DIR, PACKAGE_PARENT)))
|
18 |
+
|
19 |
+
import streamlit as st
|
20 |
+
from streamlit.logger import get_logger
|
21 |
+
from st_click_detector import click_detector
|
22 |
+
import streamlit.components.v1 as components
|
23 |
+
from streamlit.source_util import get_pages
|
24 |
+
from streamlit_extras.switch_page_button import switch_page
|
25 |
+
|
26 |
+
import helpers.session_state as session_state
|
27 |
+
from parameter_optimization.strotss_org import strotss, pil_resize_long_edge_to
|
28 |
+
from helpers import torch_to_np, np_to_torch
|
29 |
+
from effects import get_default_settings, MinimalPipelineEffect
|
30 |
+
|
31 |
+
st.set_page_config(layout="wide")
|
32 |
+
BASE_URL = "https://ivpg.hpi3d.de/wise/wise-demo/images/"
|
33 |
+
LOGGER = get_logger(__name__)
|
34 |
+
|
35 |
+
|
36 |
+
def upload_form(imgtype):
|
37 |
+
with st.form(imgtype + "-form", clear_on_submit=True):
|
38 |
+
uploaded_im = st.file_uploader(f"Load {imgtype} image:", type=["png", "jpg"], )
|
39 |
+
upload_pressed = st.form_submit_button("Upload")
|
40 |
+
|
41 |
+
if upload_pressed and uploaded_im is not None:
|
42 |
+
img = Image.open(uploaded_im)
|
43 |
+
buffered = BytesIO()
|
44 |
+
img.save(buffered, format="JPEG")
|
45 |
+
encoded = base64.b64encode(buffered.getvalue()).decode()
|
46 |
+
# session_state.get(uploaded_im=img, content_render_src=f"data:image/jpeg;base64,{encoded}")
|
47 |
+
session_state.get(**{f"{imgtype}_im": img, f"{imgtype}_render_src": f"data:image/jpeg;base64,{encoded}",
|
48 |
+
f"{imgtype}_id": "uploaded"})
|
49 |
+
st.session_state["action"] = "uploaded"
|
50 |
+
st.write("uploaded.")
|
51 |
+
|
52 |
+
upload_form("Content")
|
53 |
+
upload_form("Style")
|
54 |
+
content = st.session_state["Content_im"]
|
55 |
+
style = st.session_state["Style_im"]
|
56 |
+
base_url = "http://mr2632.byod.hpi.de:5000"
|
57 |
+
|
58 |
+
if content is not None and style is not None:
|
59 |
+
optimize_button = st.sidebar.button("Optimize Style Transfer")
|
60 |
+
if optimize_button:
|
61 |
+
url = base_url + "/upload"
|
62 |
+
content_path=f"/tmp/content-wise-uploaded{str(datetime.datetime.timestamp(datetime.datetime.now()))}.jpg"
|
63 |
+
style_path=f"/tmp/content-wise-uploaded{str(datetime.datetime.timestamp(datetime.datetime.now()))}.jpg"
|
64 |
+
content = pil_resize_long_edge_to(content, 1024)
|
65 |
+
content.save(content_path)
|
66 |
+
style = pil_resize_long_edge_to(style, 1024)
|
67 |
+
style.save(style_path)
|
68 |
+
files = {'style-image': open(style_path, "rb"), "content-image": open(content_path, "rb")}
|
69 |
+
print("start-optimizing")
|
70 |
+
task_id_res = requests.post(url, files=files)
|
71 |
+
if task_id_res.status_code != 200:
|
72 |
+
st.error(task_id_res.content)
|
73 |
+
st.stop()
|
74 |
+
else:
|
75 |
+
task_id = task_id_res.json()['task_id']
|
76 |
+
|
77 |
+
progress_bar = st.empty()
|
78 |
+
with st.spinner(text="Optimizing parameters.."):
|
79 |
+
started_time = time.time()
|
80 |
+
while True:
|
81 |
+
time.sleep(3)
|
82 |
+
status = requests.get(base_url+"/get_status", params={"task_id": task_id})
|
83 |
+
if status.status_code != 200:
|
84 |
+
print("get_status got status_code", status.status_code)
|
85 |
+
st.warning(status.content)
|
86 |
+
continue
|
87 |
+
status = status.json()
|
88 |
+
print(status)
|
89 |
+
if status["status"] != "running" and status["status"] != "queued" :
|
90 |
+
if status["msg"] != "":
|
91 |
+
st.error(status["msg"])
|
92 |
+
break
|
93 |
+
elif status["status"] == "queued":
|
94 |
+
started_time = time.time()
|
95 |
+
queue_length = requests.get(base_url+"/queue_length").json()
|
96 |
+
progress_bar.write(f"There are {queue_length['length']} tasks in the queue")
|
97 |
+
elif status["progress"] == 0.0:
|
98 |
+
progressed = min(0.5 * (time.time() - started_time) / 80.0, 0.5) #estimate 80s for strotts
|
99 |
+
progress_bar.progress(progressed)
|
100 |
+
else:
|
101 |
+
progress_bar.progress(min(0.5 + status["progress"] / 2.0, 1.0))
|
102 |
+
vp_res = requests.get(base_url+"/get_vp", params={"task_id": task_id})
|
103 |
+
if vp_res.status_code != 200:
|
104 |
+
st.warning("got status" + str(vp_res.status_code))
|
105 |
+
vp_res.raise_for_status()
|
106 |
+
else:
|
107 |
+
vp = np.load(BytesIO(vp_res.content))["vp"]
|
108 |
+
print("received vp from server")
|
109 |
+
print("got numpy array", vp.shape)
|
110 |
+
vp = torch.from_numpy(vp).cuda()
|
111 |
+
|
112 |
+
effect, preset, param_set = get_default_settings("minimal_pipeline")
|
113 |
+
effect.enable_checkpoints()
|
114 |
+
effect.cuda()
|
115 |
+
content_cuda = np_to_torch(content).cuda()
|
116 |
+
with torch.no_grad():
|
117 |
+
result_cuda = effect(content_cuda, vp)
|
118 |
+
img_res = Image.fromarray((torch_to_np(result_cuda) * 255.0).astype(np.uint8))
|
119 |
+
st.image(img_res)
|
worker/requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
imageio
|
2 |
+
imageio-ffmpeg
|
3 |
+
scipy
|
4 |
+
Pillow
|
5 |
+
numpy
|
6 |
+
--extra-index-url https://download.pytorch.org/whl/cu113
|
7 |
+
torch
|
8 |
+
torchvision
|
9 |
+
Flask
|
10 |
+
Flask-Reuploaded
|
worker/serve.py
ADDED
@@ -0,0 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime
|
2 |
+
import os
|
3 |
+
from pathlib import Path
|
4 |
+
import sys
|
5 |
+
from flask import Flask, jsonify, request, send_file, abort
|
6 |
+
from flask_uploads import UploadSet, configure_uploads, IMAGES
|
7 |
+
from werkzeug.exceptions import default_exceptions
|
8 |
+
from werkzeug.exceptions import HTTPException, NotFound
|
9 |
+
import json
|
10 |
+
import torch
|
11 |
+
import time
|
12 |
+
import threading
|
13 |
+
import traceback
|
14 |
+
from PIL import Image
|
15 |
+
import numpy as np
|
16 |
+
|
17 |
+
PACKAGE_PARENT = '..'
|
18 |
+
WISE_DIR = '../wise/'
|
19 |
+
SCRIPT_DIR = os.path.dirname(os.path.realpath(os.path.join(os.getcwd(), os.path.expanduser(__file__))))
|
20 |
+
sys.path.append(os.path.normpath(os.path.join(SCRIPT_DIR, PACKAGE_PARENT)))
|
21 |
+
sys.path.append(os.path.normpath(os.path.join(SCRIPT_DIR, WISE_DIR)))
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
from parameter_optimization.parametric_styletransfer import single_optimize
|
26 |
+
from parameter_optimization.parametric_styletransfer import CONFIG as ST_CONFIG
|
27 |
+
from parameter_optimization.strotss_org import strotss, pil_resize_long_edge_to
|
28 |
+
from helpers import torch_to_np, np_to_torch
|
29 |
+
from effects import get_default_settings, MinimalPipelineEffect
|
30 |
+
|
31 |
+
class JSONExceptionHandler(object):
|
32 |
+
|
33 |
+
def __init__(self, app=None):
|
34 |
+
if app:
|
35 |
+
self.init_app(app)
|
36 |
+
|
37 |
+
def std_handler(self, error):
|
38 |
+
response = jsonify(message=error.message)
|
39 |
+
response.status_code = error.code if isinstance(error, HTTPException) else 500
|
40 |
+
return response
|
41 |
+
|
42 |
+
|
43 |
+
def init_app(self, app):
|
44 |
+
self.app = app
|
45 |
+
self.register(HTTPException)
|
46 |
+
for code, v in default_exceptions.items():
|
47 |
+
self.register(code)
|
48 |
+
|
49 |
+
def register(self, exception_or_code, handler=None):
|
50 |
+
self.app.errorhandler(exception_or_code)(handler or self.std_handler)
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
app = Flask(__name__)
|
55 |
+
handler = JSONExceptionHandler(app)
|
56 |
+
|
57 |
+
image_folder = 'img_received'
|
58 |
+
photos = UploadSet('photos', IMAGES)
|
59 |
+
app.config['UPLOADED_PHOTOS_DEST'] = image_folder
|
60 |
+
configure_uploads(app, photos)
|
61 |
+
|
62 |
+
class Args(object):
|
63 |
+
def __init__(self, initial_data):
|
64 |
+
for key in initial_data:
|
65 |
+
setattr(self, key, initial_data[key])
|
66 |
+
def set_attributes(self, val_dict):
|
67 |
+
for key in val_dict:
|
68 |
+
setattr(self, key, val_dict[key])
|
69 |
+
|
70 |
+
default_args = {
|
71 |
+
"output_image" : "output.jpg",
|
72 |
+
## values always set by request ##
|
73 |
+
"content_image": "",
|
74 |
+
"style_image": "",
|
75 |
+
"output_vp": "",
|
76 |
+
"iters": 500
|
77 |
+
}
|
78 |
+
|
79 |
+
|
80 |
+
total_task_count = 0
|
81 |
+
|
82 |
+
class NeuralOptimizer():
|
83 |
+
def __init__(self, args) -> None:
|
84 |
+
self.cur_iteration = 0
|
85 |
+
self.args = args
|
86 |
+
|
87 |
+
def optimize(self):
|
88 |
+
base_dir = f"result/{datetime.datetime.now().strftime(r'%Y-%m-%d %H.%Mh %Ss')}"
|
89 |
+
os.makedirs(base_dir)
|
90 |
+
|
91 |
+
content = Image.open(self.args.content_image)
|
92 |
+
style = Image.open(self.args.style_image)
|
93 |
+
|
94 |
+
def set_iter(iter):
|
95 |
+
self.cur_iteration=iter
|
96 |
+
|
97 |
+
effect, preset, _ = get_default_settings("minimal_pipeline")
|
98 |
+
effect.enable_checkpoints()
|
99 |
+
|
100 |
+
reference = strotss(pil_resize_long_edge_to(content, 1024),
|
101 |
+
pil_resize_long_edge_to(style, 1024), content_weight=16.0,
|
102 |
+
device=torch.device("cuda"), space="uniform")
|
103 |
+
|
104 |
+
ref_save_path = os.path.join(base_dir, "reference.jpg")
|
105 |
+
resize_to = 720
|
106 |
+
reference = pil_resize_long_edge_to(reference, resize_to)
|
107 |
+
reference.save(ref_save_path)
|
108 |
+
ST_CONFIG["n_iterations"] = self.args.iters
|
109 |
+
vp, content_img_cuda = single_optimize(effect, preset, "l1", self.args.content_image, str(ref_save_path),
|
110 |
+
write_video=False, base_dir=base_dir,
|
111 |
+
iter_callback=set_iter)
|
112 |
+
|
113 |
+
output = Image.fromarray(torch_to_np(content_img_cuda.detach().cpu() * 255.0).astype(np.uint8))
|
114 |
+
output.save(self.args.output_image)
|
115 |
+
# torch.save (vp.detach().clone(), self.args.output_vp)
|
116 |
+
# preset_tensor = effect.vpd.preset_tensor(preset, np_to_torch(np.array(content)).cuda(), add_local_dims=True)
|
117 |
+
np.savez_compressed(self.args.output_vp, vp=vp.detach().cpu().numpy())
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
class StyleTask:
|
122 |
+
def __init__(self, task_id, style_filename, content_filename):
|
123 |
+
self.content_filename=content_filename
|
124 |
+
self.style_filename=style_filename
|
125 |
+
|
126 |
+
self.status = "queued"
|
127 |
+
self.task_id = task_id
|
128 |
+
self.error_msg = ""
|
129 |
+
self.output_filename = content_filename.split(".")[0] + "_output.jpg"
|
130 |
+
self.vp_output_filename = content_filename.split(".")[0] + "_output.npz"
|
131 |
+
|
132 |
+
# global neural_optimizer
|
133 |
+
# if neural_optimizer is None:
|
134 |
+
# neural_optimizer = NeuralOptimizer(Args(default_args))
|
135 |
+
|
136 |
+
self.neural_optimizer = NeuralOptimizer(Args(default_args))
|
137 |
+
|
138 |
+
def start(self):
|
139 |
+
self.neural_optimizer.args.set_attributes(default_args)
|
140 |
+
|
141 |
+
self.neural_optimizer.args.style_image = os.path.join(image_folder, self.style_filename)
|
142 |
+
self.neural_optimizer.args.content_image = os.path.join(image_folder, self.content_filename)
|
143 |
+
self.neural_optimizer.args.output_image = os.path.join(image_folder, self.output_filename)
|
144 |
+
self.neural_optimizer.args.output_vp = os.path.join(image_folder, self.vp_output_filename)
|
145 |
+
|
146 |
+
thread = threading.Thread(target=self.run, args=())
|
147 |
+
thread.daemon = True # Daemonize thread
|
148 |
+
thread.start() # Start the execution
|
149 |
+
|
150 |
+
def run(self):
|
151 |
+
self.status = "running"
|
152 |
+
try:
|
153 |
+
self.neural_optimizer.optimize()
|
154 |
+
except Exception as e:
|
155 |
+
print("Error in task %d :"%(self.task_id), str(e))
|
156 |
+
traceback.print_exc()
|
157 |
+
|
158 |
+
self.status = "error"
|
159 |
+
self.error_msg = str(e)
|
160 |
+
return
|
161 |
+
|
162 |
+
self.status = "finished"
|
163 |
+
print("finished styling task: " + str(self.task_id))
|
164 |
+
|
165 |
+
class StylerQueue:
|
166 |
+
queued_tasks = []
|
167 |
+
finished_tasks = []
|
168 |
+
running_task = None
|
169 |
+
|
170 |
+
def __init__(self):
|
171 |
+
thread = threading.Thread(target=self.status_checker, args=())
|
172 |
+
thread.daemon = True # Daemonize thread
|
173 |
+
thread.start() # Start the execution
|
174 |
+
|
175 |
+
def queue_task(self, *args):
|
176 |
+
global total_task_count
|
177 |
+
total_task_count += 1
|
178 |
+
task = StyleTask(total_task_count, *args)
|
179 |
+
self.queued_tasks.append(task)
|
180 |
+
|
181 |
+
return total_task_count
|
182 |
+
|
183 |
+
def get_task(self, task_id):
|
184 |
+
if self.running_task is not None and self.running_task.task_id == task_id:
|
185 |
+
return self.running_task
|
186 |
+
task = next((task for task in self.queued_tasks + self.finished_tasks if task.task_id == task_id), None)
|
187 |
+
return task
|
188 |
+
|
189 |
+
def status_checker(self):
|
190 |
+
while True:
|
191 |
+
time.sleep(0.3)
|
192 |
+
|
193 |
+
if self.running_task is None:
|
194 |
+
if len(self.queued_tasks) > 0:
|
195 |
+
self.running_task = self.queued_tasks[0]
|
196 |
+
self.running_task.start()
|
197 |
+
self.queued_tasks = self.queued_tasks[1:]
|
198 |
+
elif self.running_task.status == "finished" or self.running_task.status == "error":
|
199 |
+
self.finished_tasks.append(self.running_task)
|
200 |
+
if len(self.queued_tasks) > 0:
|
201 |
+
self.running_task = self.queued_tasks[0]
|
202 |
+
self.running_task.start()
|
203 |
+
self.queued_tasks = self.queued_tasks[1:]
|
204 |
+
else:
|
205 |
+
self.running_task = None
|
206 |
+
|
207 |
+
styler_queue = StylerQueue()
|
208 |
+
|
209 |
+
|
210 |
+
@app.route('/upload', methods=['POST'])
|
211 |
+
def upload():
|
212 |
+
if 'style-image' in request.files and \
|
213 |
+
'content-image' in request.files:
|
214 |
+
|
215 |
+
style_filename = photos.save(request.files['style-image'])
|
216 |
+
content_filename = photos.save(request.files['content-image'])
|
217 |
+
|
218 |
+
job_id = styler_queue.queue_task(style_filename, content_filename)
|
219 |
+
print('added new stylization task', style_filename, content_filename)
|
220 |
+
|
221 |
+
return jsonify({"task_id": job_id})
|
222 |
+
abort(jsonify(message="request needs style, content image"), 400)
|
223 |
+
|
224 |
+
@app.route('/get_status')
|
225 |
+
def get_status():
|
226 |
+
task_id = int(request.args.get("task_id"))
|
227 |
+
task = styler_queue.get_task(task_id)
|
228 |
+
|
229 |
+
if task is None:
|
230 |
+
abort(jsonify(message="task with id %d not found"%task_id), 400)
|
231 |
+
|
232 |
+
status = {
|
233 |
+
"status": task.status,
|
234 |
+
"msg": task.error_msg
|
235 |
+
}
|
236 |
+
|
237 |
+
if task.status == "running":
|
238 |
+
if isinstance(task, StyleTask):
|
239 |
+
status["progress"] = float(task.neural_optimizer.cur_iteration) / float(default_args["iters"])
|
240 |
+
|
241 |
+
return jsonify(status)
|
242 |
+
|
243 |
+
@app.route('/queue_length')
|
244 |
+
def get_queue_length():
|
245 |
+
tasks = len(styler_queue.queued_tasks)
|
246 |
+
if styler_queue.running_task is not None:
|
247 |
+
tasks += 1
|
248 |
+
|
249 |
+
status = {
|
250 |
+
"length": tasks
|
251 |
+
}
|
252 |
+
|
253 |
+
return jsonify(status)
|
254 |
+
|
255 |
+
|
256 |
+
@app.route('/get_image')
|
257 |
+
def get_image():
|
258 |
+
task_id = int(request.args.get("task_id"))
|
259 |
+
task = styler_queue.get_task(task_id)
|
260 |
+
|
261 |
+
if task is None:
|
262 |
+
abort(jsonify(message="task with id %d not found"%task_id), 400)
|
263 |
+
|
264 |
+
if task.status != "finished":
|
265 |
+
abort(jsonify(message="task with id %d not in finished state"%task_id), 400)
|
266 |
+
|
267 |
+
return send_file(os.path.join(image_folder, task.output_filename), mimetype='image/jpg')
|
268 |
+
|
269 |
+
@app.route('/get_vp')
|
270 |
+
def get_vp():
|
271 |
+
task_id = int(request.args.get("task_id"))
|
272 |
+
task = styler_queue.get_task(task_id)
|
273 |
+
|
274 |
+
if task is None:
|
275 |
+
abort(jsonify(message="task with id %d not found"%task_id), 400)
|
276 |
+
|
277 |
+
if task.status != "finished":
|
278 |
+
abort(jsonify(message="task with id %d not in finished state"%task_id), 400)
|
279 |
+
|
280 |
+
return send_file(os.path.join(image_folder, task.vp_output_filename), mimetype='application/zip')
|
281 |
+
|
282 |
+
|
283 |
+
if __name__ == '__main__':
|
284 |
+
app.run(debug=False, host="0.0.0.0",port=5000)
|