AlexanderSvarfdal's picture
Fixed minor things
fc0d8a3
raw
history blame
19.3 kB
import faicons as fa
import sys
import os
from ipyleaflet import Map, Marker, LayerGroup, Circle, Icon, AwesomeIcon, DivIcon, basemaps, GeoJSON
import matplotlib.pyplot as plt
from pandas.core.frame import functools
# Load data and compute static values
from borgarlina3_leaflet import create_map, load_and_preprocess_data
from shared import app_dir, tips
from shinywidgets import render_widget
from shiny import reactive, render
from shiny.express import input, ui
# Import from backend
from data_processing.data_provider import Data_provider
initBackend = Data_provider()
def getScore(cords):
pass
def generateStops(year):
geojson_file = f"given_data/cityline_geojson/cityline_{year}.geojson"
pop_file = "given_data/ibuafjoldi.csv"
smallarea_file = "given_data/smasvaedi_2021.json"
dwellings_file = "given_data/ibudir.csv"
gpdStops, _, all_small_areas = load_and_preprocess_data(geojson_file, pop_file, smallarea_file, dwellings_file)
points = []
stopData = {}
# Assuming your GeoDataFrame is named 'gdf'
for _, row in gpdStops.iterrows():
point = row["geometry"]
color = row["line"]
if color not in ["red", "yellow", "blue", "green", "purple", "orange"]:
color = color.split("/")
points.append(((point.y, point.x), color))
return points, all_small_areas
# Add page title and sidebar
ui.page_opts(title="Borgarlínan", fillable=True)
with ui.sidebar(open="open"):
ui.input_select("year", "Year:", {2025: "2025", 2029: "2029", 2030: "2030"})
ui.input_slider("rad", "Stop reach radius:", min=200, max=1000, value=400),
# station_coord, w_density=1, w_income=1, w_age=1):
ui.input_numeric("w_density", "Density Weight", "1")
ui.input_numeric("w_income", "Income Weight", "1")
ui.input_numeric("w_age", "Age Weight", "1")
ui.input_action_button("reset", "Reset zoom")
with ui.layout_columns(col_widths=[8, 4]):
with ui.card(full_screen=True):
ui.card_header("Capital area")
@render_widget
def map():
return Map(
basemap=basemaps.CartoDB.Positron)
with ui.layout_column_wrap(width="450px"):
with ui.layout_columns(col_widths=(6, 6), min_height="450px"):
with ui.value_box(theme="text-red", showcase=fa.icon_svg("bus", width="50px"),):
"Average score"
@render.text
def render_line_score():
score = lineScore().get("red", 0)
if score:
return str(int(score))
else:
return str("Pending")
with ui.value_box(theme="text-blue",showcase=fa.icon_svg("bus", width="50px"),):
"Average score"
@render.text
def render_line_score1():
score = lineScore().get("blue", 0)
if score:
return str(int(score))
else:
return str("Pending")
with ui.value_box(theme="text-yellow" ,showcase=fa.icon_svg("bus", width="50px"),):
"Average score"
@render.text
def render_line_score2():
score = lineScore().get("orange", 0)
if score:
return str(int(score))
else:
return str("Pending")
with ui.value_box(theme="text-green",showcase=fa.icon_svg("bus", width="50px"),):
"Average score"
@render.text
def render_line_score4():
score = lineScore().get("green", 0)
if score:
return str(int(score))
else:
return str("Pending")
with ui.value_box(theme="text-purple",showcase=fa.icon_svg("bus", width="50px"),):
"Average score"
@render.text
def render_line_score3():
score = lineScore().get("purple", 0)
if score:
return str(int(score))
else:
return str("Pending")
with ui.value_box(theme="text-black",showcase=fa.icon_svg("route", width="50px")):
"Total average score"
@render.text
def render_line_score5():
return str(int(sum(lineScore().get(color, 0) for color in ["red", "blue", "orange", "purple", "green"])))
with ui.card(min_height="450px"):
with ui.navset_pill(id="tab"):
with ui.nav_panel("Score"):
@render.text
def totalScore():
score = scores()
return "Total score: " + str(int(score["total_score"]))
@render.plot(alt="A pie chart of score contributions from age, income, and density.")
def contribution_pie_chart():
print("Generating pie chart of contributions")
# Get score components
score = scores()
age_contribution = score["age_score"]
income_contribution = score["income_score"]
density_contribution = score["density_score"]
# Data for the pie chart
contributions = [age_contribution, income_contribution, density_contribution]
labels = ["Age", "Income", "Density"]
colors = ["#FD4D86", "#36DEC2", "#704CB0"] # Custom colors for the segments
# Create a Matplotlib figure
fig, ax = plt.subplots(figsize=(5, 5))
# Create the pie chart
ax.pie(
contributions,
labels=labels,
autopct='%1.1f%%',
startangle=90,
colors=colors,
textprops={'fontsize': 12}
)
# Add a title
ax.set_title("Score Contributions", fontsize=16)
# Return the figure for rendering in Shiny
return fig
with ui.nav_panel("Income"):
"Income Score"
@render.text
def incomeScore():
score = scores()
return score["income_score"]
@render.plot(alt="A chart of income distribution.")
def income_plot():
print("Generating income distribution bar chart")
# Get selected stop coordinates
x, y = stop.get()
station_coord = (y, x)
# Fetch income distribution data from the Data_provider instance
income_data = initBackend.get_station_score(station_coord, radius=input.rad())['income_data'] # Assume this returns a dictionary
# Example structure: {1: 150, 2: 200, 3: 180, ...}
income_brackets = list(income_data.keys())
populations = list(income_data.values())
# Create a Matplotlib figure
fig, ax = plt.subplots(figsize=(6, 3))
# Create the bar chart
ax.bar(income_brackets, populations, color='#36DEC2')
# Customize the plot
ax.set_title("Population by Income Bracket")
ax.set_xlabel("Income Bracket")
ax.set_ylabel("Population")
ax.set_xticks(income_brackets)
ax.set_xticklabels(income_brackets, rotation=45, ha="right")
# Return the figure for rendering in Shiny
return fig
with ui.nav_panel("Age"):
"Age Score"
@render.text
def ageScore():
score = scores()
return score["age_score"]
@render.plot(alt="A bar chart of age distribution.")
def age_plot():
print("Generating age distribution bar chart")
# Get selected stop coordinates
x, y = stop.get()
station_coord = (y, x)
# Fetch age distribution data from the Data_provider instance
age_data = initBackend.get_station_score(station_coord, radius=input.rad())['age_data'] # Assume this returns a dictionary
# Example structure: {'0-4 ára': 120, '5-9 ára': 140, ...}
age_brackets = list(age_data.keys())
populations = list(age_data.values())
# Create a Matplotlib figure
fig, ax = plt.subplots(figsize=(6, 3))
# Create the bar chart with custom colors
ax.bar(age_brackets, populations, color='#FD4D86')
# Customize the plot
ax.set_title("Population by Age Bracket", fontsize=14)
ax.set_xlabel("Age Bracket", fontsize=12)
ax.set_ylabel("Population", fontsize=12)
ax.set_xticks(range(len(age_brackets)))
ax.set_xticklabels(age_brackets, rotation=45, ha="right", fontsize=10)
# Return the figure for rendering in Shiny
return fig
with ui.nav_panel("Density"):
"Density"
@render.text
def sensityScoer():
score = scores()
return float(score["density_score"] * 1000000)
@render.plot(alt="A bar chart of density scores for all areas within the radius.")
def density_plot():
print("Generating density score bar chart")
# Get selected stop coordinates
x, y = stop.get()
station_coord = (y, x)
# Fetch small area contributions from the Data_provider instance
small_area_contributions = initBackend.get_station_score(
station_coord,
radius=input.rad(),
w_density=input.w_density(),
w_income=input.w_income(),
w_age=input.w_age()
)['small_area_contributions']
# Extract density scores for each small area
area_ids = [area_id for area_id in small_area_contributions.keys()]
density_scores = [area_data['density_score'] for area_data in small_area_contributions.values()]
# Create a Matplotlib figure
fig, ax = plt.subplots(figsize=(6, 3))
# Create the bar chart
ax.bar(area_ids, density_scores, color='#704CB0')
# Customize the plot
ax.set_title("Density Scores of Small Areas", fontsize=14)
ax.set_xlabel("Small Area ID", fontsize=12)
ax.set_ylabel("Density Score", fontsize=12)
ax.set_xticks(range(len(area_ids)))
ax.set_xticklabels(area_ids, rotation=45, ha="right", fontsize=10)
# Return the figure for rendering in Shiny
return fig
ui.include_css(app_dir / "styles.css")
# --------------------------------------------------------
# Reactive calculations and effects
# --------------------------------------------------------
@reactive.effect
def _():
year = input.year()
stops, small_areas = generateStops(year)
rad = input.rad()
markers = []
circles = []
for layer in map.widget.layers[:]:
if layer.name in ["stops", "radius", "polygons", "heatmap"]:
map.widget.remove_layer(layer)
# Add polygons from small_areas
polygons_layer = []
for _, area in small_areas.iterrows():
geojson_data = area["geometry"].__geo_interface__
geojson_dict = {
"type": "Feature",
"properties": {},
"geometry": geojson_data
}
geojson = GeoJSON(
data=geojson_dict, # Pass the dictionary here
style={
"color": "#005485", # Border color
"fillColor": "white", # Fill color
"opacity": 0.5, # Border opacity
"weight": 1.0, # Border thickness
"dashArray": "5, 5", # Optional dashed border
"fillOpacity": 0.3 # Fill opacity
},
hover_style={"color": "#005485", "weight": 1}, # Highlight on hover
name="polygons"
)
polygons_layer.append(geojson)
i = 0
for stop, color in stops:
if type(color) == list:
smallerRad = 0
for c in color:
circle = Circle()
circle.location = stop
circle.radius = rad - smallerRad
circle.color = c
circle.fill_opacity = 0.1
circle.name = str(i)
circles.append(circle)
smallerRad =+ 50
else:
circle = Circle()
circle.location = stop
circle.radius = rad
circle.color = color
circle.fill_color = color
circle.fill_opacity = 0.1
circle.name = str(i)
circles.append(circle)
icon = AwesomeIcon(name="bus", marker_color="black", icon_color="white")
# icon1 = DivIcon(html = '<div style="border-radius:50%;background-color: black; width: 10px; height: 10px;"></div>')
# icon2 = Icon(icon_url="marker.png")
marker = Marker(location=stop,
icon=icon,
icon_anchor=(10,10),
icon_size=(0,0),
draggable=True)
marker.name = str(i)
marker.on_click(functools.partial(create_marker_callback, id=stop))
marker.on_move(functools.partial(reset_marker, index=i))
markers.append(marker)
i += 1
layerGroup = LayerGroup(layers=markers, name="stops")
layerGroup2 = LayerGroup(layers=circles, name="radius")
map.widget.add(layerGroup)
map.widget.add(layerGroup2)
# Add polygon layers to the map
polygon_group = LayerGroup(layers=polygons_layer, name="polygons")
map.widget.add(polygon_group)
stop = reactive.value()
def create_marker_callback(id, **kwargs):
# We can also get coordinates of the marker here
rad = input.rad()
zoom = 15.0
if rad > 500:
zoom = 14.8
map.widget.zoom = zoom
map.widget.center = kwargs["coordinates"]
stop.set(id)
def reset_marker(index, **kwargs):
cord = kwargs["location"]
x = cord[0]
y = cord[1]
for layer in map.widget.layers:
if layer.name == "radius": # Check for the correct LayerGroup
for circle in layer.layers:
if circle.name == str(index): # Match the Circle by name
circle.location = [x, y] # Update the Circle's location
stop.set((x,y))
@reactive.effect
def centerMap():
mapCenter = input.reset()
map.widget.zoom = 11.8
map.widget.center = (64.11,-21.90)
@reactive.calc
def scores():
x, y = stop.get()
score = initBackend.get_station_score(station_coord=(y, x), w_density=input.w_density(), w_income=input.w_income(), w_age=input. w_age(), radius=input.rad())
return score
@reactive.calc
def lineScore():
listOfStops, _ = generateStops(input.year())
listOflines = {}
# Handle stops with single and multiple colors
for stop, color in listOfStops:
x, y = stop
# If the color is a list (multiple colors), iterate through it
if isinstance(color, list):
for single_color in color:
if single_color not in listOflines:
listOflines[single_color] = []
listOflines[single_color].append((y, x))
else:
# If it's a single color, process it normally
if color not in listOflines:
listOflines[color] = []
listOflines[color].append((y, x))
# Calculate scores for each line
lines = {}
for key, val in listOflines.items():
score = initBackend.line_score(
val,
w_density=input.w_density(),
w_income=input.w_income(),
w_age=input.w_age(),
radius=input.rad()
)
lines[key] = score["final_score"]
return lines