Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import os
|
| 2 |
import re
|
| 3 |
import json
|
|
@@ -5,209 +6,235 @@ import logging
|
|
| 5 |
import requests
|
| 6 |
import pandas as pd
|
| 7 |
import gradio as gr
|
|
|
|
| 8 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 9 |
|
| 10 |
-
# --- Logging ---
|
| 11 |
logging.basicConfig(level=logging.INFO)
|
| 12 |
logger = logging.getLogger(__name__)
|
| 13 |
|
| 14 |
# --- Constants ---
|
| 15 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 16 |
-
MODEL_NAME
|
|
|
|
| 17 |
|
| 18 |
-
# --- Load
|
| 19 |
logger.info(f"Loading tokenizer and model: {MODEL_NAME} ...")
|
| 20 |
try:
|
| 21 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 22 |
-
|
|
|
|
| 23 |
if tokenizer.pad_token_id is None:
|
| 24 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
| 26 |
logger.info("Model and tokenizer loaded successfully.")
|
| 27 |
except Exception as e:
|
| 28 |
logger.exception(f"Error loading model/tokenizer for '{MODEL_NAME}': {e}")
|
| 29 |
raise
|
| 30 |
|
| 31 |
-
# ---
|
| 32 |
-
class
|
| 33 |
-
"""
|
|
|
|
|
|
|
| 34 |
@staticmethod
|
| 35 |
-
def
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
# --- Reasoning Agent ---
|
| 41 |
class ReasoningAgent:
|
| 42 |
def __init__(self):
|
| 43 |
self.tools_description = tools_description
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
# Few-shot + strict instruction to try to get JSON-only output
|
| 47 |
self.few_shot = (
|
| 48 |
-
"
|
| 49 |
-
"
|
| 50 |
-
"
|
| 51 |
-
'{\n'
|
| 52 |
-
' "thought": "I will add 2 and 3 step by step",\n'
|
| 53 |
-
' "action": "AddTwoNumbers.run(2, 3)",\n'
|
| 54 |
-
' "observation": "5",\n'
|
| 55 |
-
' "answer": "5"\n'
|
| 56 |
-
'}\n\n'
|
| 57 |
-
"Example:\n"
|
| 58 |
-
"Question: Who discovered X (unknown)?\n"
|
| 59 |
-
"Answer in JSON:\n"
|
| 60 |
-
'{\n'
|
| 61 |
-
' "thought": "I do not know this fact",\n'
|
| 62 |
-
' "action": "None",\n'
|
| 63 |
-
' "observation": "",\n'
|
| 64 |
-
' "answer": "I do not know."\n'
|
| 65 |
-
'}\n\n'
|
| 66 |
)
|
|
|
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
"
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
)
|
|
|
|
|
|
|
| 75 |
|
| 76 |
-
def
|
| 77 |
-
"""
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
if generated_tokens.nelement() == 0:
|
| 98 |
-
generated = ""
|
| 99 |
-
else:
|
| 100 |
-
generated = tokenizer.decode(generated_tokens, skip_special_tokens=True).strip()
|
| 101 |
-
return generated
|
| 102 |
-
except Exception as e:
|
| 103 |
-
logger.exception("Generation error: %s", e)
|
| 104 |
-
raise
|
| 105 |
-
|
| 106 |
-
def extract_first_json(self, text: str):
|
| 107 |
-
"""Extract the first JSON object found in text. Returns Python object or None."""
|
| 108 |
-
if text is None:
|
| 109 |
-
return None
|
| 110 |
-
# Regex to find first balanced-ish JSON object (handles simple nested objects)
|
| 111 |
m = re.search(r"\{(?:[^{}]|\{[^{}]*\})*\}", text, re.DOTALL)
|
| 112 |
if not m:
|
| 113 |
return None
|
| 114 |
json_text = m.group(0)
|
| 115 |
try:
|
| 116 |
-
|
|
|
|
| 117 |
except json.JSONDecodeError:
|
| 118 |
-
#
|
| 119 |
fixed = json_text.replace("'", '"')
|
| 120 |
-
fixed = re.sub(r"\bNone\b", "null", fixed)
|
| 121 |
-
fixed = re.sub(r",\s*}", "}", fixed)
|
| 122 |
-
fixed = re.sub(r",\s*\]", "]", fixed)
|
| 123 |
try:
|
| 124 |
-
|
|
|
|
| 125 |
except Exception:
|
| 126 |
-
logger.debug("Failed to decode JSON even after fixes. Raw: %s", json_text)
|
| 127 |
return None
|
| 128 |
|
| 129 |
def __call__(self, question: str) -> str:
|
| 130 |
-
logger.info("\n=== Processing Question ===\n
|
| 131 |
-
prompt = (
|
| 132 |
-
self.few_shot
|
| 133 |
-
+ "\n\n"
|
| 134 |
-
+ self.instruction
|
| 135 |
-
+ f"\n\nQuestion: {question}\nAnswer in JSON:"
|
| 136 |
-
)
|
| 137 |
|
|
|
|
| 138 |
try:
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
except Exception as e:
|
| 147 |
-
logger.exception("Generation
|
| 148 |
return f"AGENT ERROR: Generation failed: {e}"
|
| 149 |
|
| 150 |
-
#
|
| 151 |
-
parsed = self.
|
| 152 |
-
if parsed
|
| 153 |
-
#
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
#
|
| 158 |
-
thought = parsed.get("thought", "")
|
| 159 |
-
action = parsed.get("action",
|
| 160 |
-
observation = parsed.get("observation", "")
|
| 161 |
-
answer = parsed.get("answer", "")
|
| 162 |
-
|
| 163 |
-
# If
|
| 164 |
-
|
|
|
|
| 165 |
try:
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
if
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
observation = str(obs)
|
| 173 |
-
# If answer is placeholder or empty, set to observation
|
| 174 |
-
if not answer or str(answer).strip().lower() in ["", "none", "null", "i do not know."]:
|
| 175 |
-
answer = str(obs)
|
| 176 |
-
logger.info("β
Executed tool: AddTwoNumbers.run(%s, %s) -> %s", a_val, b_val, obs)
|
| 177 |
-
else:
|
| 178 |
-
observation = "TOOL ERROR: wrong number of args"
|
| 179 |
-
logger.warning("Tool call had wrong number of arguments: %s", action)
|
| 180 |
except Exception as e:
|
| 181 |
-
observation = f"
|
| 182 |
-
logger.exception("
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
else:
|
| 188 |
-
|
|
|
|
| 189 |
|
| 190 |
-
#
|
| 191 |
-
if
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
if not answer_str or answer_str.lower() in ["none", "null", "i do not know.", "i do not know"]:
|
| 195 |
-
answer_str = "I do not know."
|
| 196 |
|
| 197 |
# Log internal state
|
| 198 |
logger.info("π Thought: %s", thought)
|
| 199 |
logger.info("π§ Action: %s", action)
|
| 200 |
-
logger.info("π Observation: %s", observation)
|
| 201 |
-
logger.info("π Answer: %s",
|
| 202 |
logger.info("-" * 60)
|
| 203 |
|
| 204 |
-
|
|
|
|
|
|
|
| 205 |
|
| 206 |
-
# --- Run & Submit
|
| 207 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
| 208 |
-
"""
|
| 209 |
-
Fetch questions, run the agent on them, submit answers, and return status + results table.
|
| 210 |
-
"""
|
| 211 |
if profile:
|
| 212 |
username = profile.username
|
| 213 |
logger.info("User logged in: %s", username)
|
|
@@ -218,36 +245,27 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 218 |
questions_url = f"{DEFAULT_API_URL}/questions"
|
| 219 |
submit_url = f"{DEFAULT_API_URL}/submit"
|
| 220 |
|
| 221 |
-
# 1. Fetch questions
|
| 222 |
-
logger.info("Fetching questions from: %s", questions_url)
|
| 223 |
try:
|
| 224 |
response = requests.get(questions_url, timeout=15)
|
| 225 |
response.raise_for_status()
|
| 226 |
questions_data = response.json()
|
| 227 |
-
if not isinstance(questions_data, list)
|
| 228 |
-
logger.
|
| 229 |
return "Fetched questions list is empty or invalid format.", None
|
| 230 |
except Exception as e:
|
| 231 |
-
logger.exception("Error fetching questions
|
| 232 |
return f"Error fetching questions: {e}", None
|
| 233 |
|
| 234 |
-
|
| 235 |
-
try:
|
| 236 |
-
agent = ReasoningAgent()
|
| 237 |
-
except Exception as e:
|
| 238 |
-
logger.exception("Error instantiating agent: %s", e)
|
| 239 |
-
return f"Error initializing agent: {e}", None
|
| 240 |
-
|
| 241 |
-
# 3. Run agent on questions
|
| 242 |
results_log = []
|
| 243 |
answers_payload = []
|
| 244 |
-
logger.info("Running agent on %d questions...", len(questions_data))
|
| 245 |
|
|
|
|
| 246 |
for item in questions_data:
|
| 247 |
task_id = item.get("task_id")
|
| 248 |
question_text = item.get("question")
|
| 249 |
if not task_id or question_text is None:
|
| 250 |
-
logger.warning("Skipping item
|
| 251 |
continue
|
| 252 |
try:
|
| 253 |
submitted_answer = agent(question_text)
|
|
@@ -258,7 +276,7 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 258 |
"Submitted Answer": submitted_answer
|
| 259 |
})
|
| 260 |
except Exception as e:
|
| 261 |
-
logger.exception("
|
| 262 |
results_log.append({
|
| 263 |
"Task ID": task_id,
|
| 264 |
"Question": question_text,
|
|
@@ -269,17 +287,17 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 269 |
logger.warning("Agent did not produce any answers to submit.")
|
| 270 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 271 |
|
| 272 |
-
# 4. Submit
|
| 273 |
submission_data = {
|
| 274 |
"username": username.strip(),
|
| 275 |
"agent_code": f"https://huggingface.co/spaces/{os.getenv('SPACE_ID')}/tree/main",
|
| 276 |
"answers": answers_payload
|
| 277 |
}
|
| 278 |
-
logger.info("Submitting %d answers to
|
|
|
|
| 279 |
try:
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
result_data =
|
| 283 |
final_status = (
|
| 284 |
f"Submission Successful!\n"
|
| 285 |
f"User: {result_data.get('username')}\n"
|
|
@@ -287,33 +305,32 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 287 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
| 288 |
f"Message: {result_data.get('message', 'No message received.')}"
|
| 289 |
)
|
| 290 |
-
logger.info("Submission successful.")
|
| 291 |
results_df = pd.DataFrame(results_log)
|
|
|
|
| 292 |
return final_status, results_df
|
| 293 |
except requests.exceptions.HTTPError as e:
|
| 294 |
-
logger.exception("Submission HTTP error
|
| 295 |
try:
|
| 296 |
-
|
| 297 |
-
detail = err_json.get("detail", e.response.text)
|
| 298 |
except Exception:
|
| 299 |
detail = str(e)
|
| 300 |
-
status_message = f"Submission Failed: {detail}"
|
| 301 |
results_df = pd.DataFrame(results_log)
|
| 302 |
-
return
|
| 303 |
except Exception as e:
|
| 304 |
-
logger.exception("Submission error
|
| 305 |
results_df = pd.DataFrame(results_log)
|
| 306 |
return f"Submission failed: {e}", results_df
|
| 307 |
|
|
|
|
| 308 |
# --- Gradio Interface ---
|
| 309 |
with gr.Blocks() as demo:
|
| 310 |
-
gr.Markdown("# Reasoning Agent Runner
|
| 311 |
gr.Markdown(
|
| 312 |
"""
|
| 313 |
Instructions:
|
| 314 |
-
1. Login with Hugging Face
|
| 315 |
2. Click 'Run Evaluation & Submit All Answers'.
|
| 316 |
-
3. The agent
|
| 317 |
"""
|
| 318 |
)
|
| 319 |
gr.LoginButton()
|
|
@@ -327,20 +344,5 @@ with gr.Blocks() as demo:
|
|
| 327 |
)
|
| 328 |
|
| 329 |
if __name__ == "__main__":
|
| 330 |
-
|
| 331 |
-
# Print environment hints
|
| 332 |
-
space_host_startup = os.getenv("SPACE_HOST")
|
| 333 |
-
space_id_startup = os.getenv("SPACE_ID")
|
| 334 |
-
if space_host_startup:
|
| 335 |
-
print(f"β
SPACE_HOST found: {space_host_startup}")
|
| 336 |
-
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
| 337 |
-
else:
|
| 338 |
-
print("βΉοΈ SPACE_HOST environment variable not found (running locally?).")
|
| 339 |
-
if space_id_startup:
|
| 340 |
-
print(f"β
SPACE_ID found: {space_id_startup}")
|
| 341 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
| 342 |
-
else:
|
| 343 |
-
print("βΉοΈ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
| 344 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
| 345 |
-
|
| 346 |
demo.launch(debug=True, share=False)
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
import os
|
| 3 |
import re
|
| 4 |
import json
|
|
|
|
| 6 |
import requests
|
| 7 |
import pandas as pd
|
| 8 |
import gradio as gr
|
| 9 |
+
import torch
|
| 10 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 11 |
|
| 12 |
+
# --- Logging setup ---
|
| 13 |
logging.basicConfig(level=logging.INFO)
|
| 14 |
logger = logging.getLogger(__name__)
|
| 15 |
|
| 16 |
# --- Constants ---
|
| 17 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 18 |
+
# Change MODEL_NAME if you want a smaller / different causal model
|
| 19 |
+
MODEL_NAME = os.getenv("MODEL_NAME", "bigscience/bloomz-1b1")
|
| 20 |
|
| 21 |
+
# --- Load tokenizer & model (causal LM) ---
|
| 22 |
logger.info(f"Loading tokenizer and model: {MODEL_NAME} ...")
|
| 23 |
try:
|
| 24 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=True)
|
| 25 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
| 26 |
+
# ensure pad_token_id set
|
| 27 |
if tokenizer.pad_token_id is None:
|
| 28 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 29 |
+
# move to device
|
| 30 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 31 |
+
model.to(device)
|
| 32 |
+
model.eval()
|
| 33 |
logger.info("Model and tokenizer loaded successfully.")
|
| 34 |
except Exception as e:
|
| 35 |
logger.exception(f"Error loading model/tokenizer for '{MODEL_NAME}': {e}")
|
| 36 |
raise
|
| 37 |
|
| 38 |
+
# --- Simple Wikipedia search tool (synchronous, HTTP requests) ---
|
| 39 |
+
class WikipediaTool:
|
| 40 |
+
"""Simple helper to search Wikipedia and fetch page extracts."""
|
| 41 |
+
API_BASE = "https://en.wikipedia.org/w/api.php"
|
| 42 |
+
|
| 43 |
@staticmethod
|
| 44 |
+
def search(query: str, limit: int = 3):
|
| 45 |
+
"""Return a list of search results (title, snippet)."""
|
| 46 |
+
params = {
|
| 47 |
+
"action": "query",
|
| 48 |
+
"list": "search",
|
| 49 |
+
"srsearch": query,
|
| 50 |
+
"srlimit": limit,
|
| 51 |
+
"format": "json",
|
| 52 |
+
}
|
| 53 |
+
r = requests.get(WikipediaTool.API_BASE, params=params, timeout=10)
|
| 54 |
+
r.raise_for_status()
|
| 55 |
+
data = r.json()
|
| 56 |
+
results = []
|
| 57 |
+
for item in data.get("query", {}).get("search", []):
|
| 58 |
+
results.append({
|
| 59 |
+
"title": item.get("title"),
|
| 60 |
+
"snippet": re.sub("<.*?>", "", item.get("snippet", "")) # strip HTML tags
|
| 61 |
+
})
|
| 62 |
+
return results
|
| 63 |
|
| 64 |
+
@staticmethod
|
| 65 |
+
def get_extract(title: str, chars: int = 800):
|
| 66 |
+
"""Return the extract (plain text) for a Wikipedia page title."""
|
| 67 |
+
params = {
|
| 68 |
+
"action": "query",
|
| 69 |
+
"prop": "extracts",
|
| 70 |
+
"explaintext": True,
|
| 71 |
+
"exchars": chars,
|
| 72 |
+
"titles": title,
|
| 73 |
+
"format": "json",
|
| 74 |
+
"redirects": 1
|
| 75 |
+
}
|
| 76 |
+
r = requests.get(WikipediaTool.API_BASE, params=params, timeout=10)
|
| 77 |
+
r.raise_for_status()
|
| 78 |
+
data = r.json()
|
| 79 |
+
pages = data.get("query", {}).get("pages", {})
|
| 80 |
+
for pid, page in pages.items():
|
| 81 |
+
return {"title": page.get("title"), "extract": page.get("extract", "")}
|
| 82 |
+
return {"title": title, "extract": ""}
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
# --- Tools description presented to the model ---
|
| 86 |
+
tools_description = (
|
| 87 |
+
"Available tool: Wikipedia.search(query) -> returns a short list of titles+snippets.\n"
|
| 88 |
+
" Wikipedia.get_extract(title) -> returns the page extract (plain text).\n"
|
| 89 |
+
"If you want the agent to use the web, call these tools by writing action like:\n"
|
| 90 |
+
" Search: Wikipedia.search(\"query string\")\n"
|
| 91 |
+
" Extract: Wikipedia.get_extract(\"Exact Page Title\")\n"
|
| 92 |
+
"If unsure or cannot answer from tools, set answer to \"I do not know.\""
|
| 93 |
+
)
|
| 94 |
|
| 95 |
# --- Reasoning Agent ---
|
| 96 |
class ReasoningAgent:
|
| 97 |
def __init__(self):
|
| 98 |
self.tools_description = tools_description
|
| 99 |
+
# small few-shot just to show JSON format (kept minimal)
|
|
|
|
|
|
|
| 100 |
self.few_shot = (
|
| 101 |
+
"Format example (ONLY RETURN a single JSON object):\n"
|
| 102 |
+
'{"thought":"...","action":"...","observation":"...","answer":"..."}\n'
|
| 103 |
+
"Action should be a single tool call or 'None'.\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
)
|
| 105 |
+
logger.info("ReasoningAgent initialized.")
|
| 106 |
|
| 107 |
+
def build_prompt(self, question: str) -> str:
|
| 108 |
+
# Keep prompt compact and explicit: produce ONLY one JSON object.
|
| 109 |
+
instruction = (
|
| 110 |
+
"You are an AI reasoning agent. Use the available tools if needed.\n"
|
| 111 |
+
+ self.tools_description + "\n"
|
| 112 |
+
"Answer ONLY with a SINGLE valid JSON object (no extra text, no code). "
|
| 113 |
+
"Use exactly the keys: thought, action, observation, answer.\n"
|
| 114 |
+
"If you are going to call a tool, set action to the tool call as a single string; "
|
| 115 |
+
"if not using tools set action to \"None\". "
|
| 116 |
+
"If unsure, set answer to \"I do not know.\""
|
| 117 |
)
|
| 118 |
+
prompt = f"{self.few_shot}\n{instruction}\n\nQuestion: {question}\nAnswer in JSON:"
|
| 119 |
+
return prompt
|
| 120 |
|
| 121 |
+
def parse_action(self, action_str: str):
|
| 122 |
+
"""
|
| 123 |
+
Recognize actions of the form:
|
| 124 |
+
Wikipedia.search("query")
|
| 125 |
+
Wikipedia.get_extract("Title")
|
| 126 |
+
Returns a tuple (tool_name, arg) or (None, None).
|
| 127 |
+
"""
|
| 128 |
+
if not isinstance(action_str, str):
|
| 129 |
+
return None, None
|
| 130 |
+
action_str = action_str.strip()
|
| 131 |
+
# search pattern Wikipedia.search("...")
|
| 132 |
+
m = re.match(r'Wikipedia\.search\(\s*["\'](.+?)["\']\s*\)\s*$', action_str)
|
| 133 |
+
if m:
|
| 134 |
+
return "search", m.group(1)
|
| 135 |
+
m2 = re.match(r'Wikipedia\.get_extract\(\s*["\'](.+?)["\']\s*\)\s*$', action_str)
|
| 136 |
+
if m2:
|
| 137 |
+
return "extract", m2.group(1)
|
| 138 |
+
return None, None
|
| 139 |
+
|
| 140 |
+
def extract_json(self, text: str):
|
| 141 |
+
# Try to find the first JSON object in the generated text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
m = re.search(r"\{(?:[^{}]|\{[^{}]*\})*\}", text, re.DOTALL)
|
| 143 |
if not m:
|
| 144 |
return None
|
| 145 |
json_text = m.group(0)
|
| 146 |
try:
|
| 147 |
+
parsed = json.loads(json_text)
|
| 148 |
+
return parsed
|
| 149 |
except json.JSONDecodeError:
|
| 150 |
+
# try to fix common issues: single quotes -> double quotes
|
| 151 |
fixed = json_text.replace("'", '"')
|
|
|
|
|
|
|
|
|
|
| 152 |
try:
|
| 153 |
+
parsed = json.loads(fixed)
|
| 154 |
+
return parsed
|
| 155 |
except Exception:
|
|
|
|
| 156 |
return None
|
| 157 |
|
| 158 |
def __call__(self, question: str) -> str:
|
| 159 |
+
logger.info(f"\n=== Processing Question ===\n{question}\n")
|
| 160 |
+
prompt = self.build_prompt(question)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
|
| 162 |
+
# Tokenize & generate
|
| 163 |
try:
|
| 164 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 165 |
+
out = model.generate(
|
| 166 |
+
**inputs,
|
| 167 |
+
max_new_tokens=220,
|
| 168 |
+
do_sample=False,
|
| 169 |
+
num_beams=3,
|
| 170 |
+
early_stopping=True,
|
| 171 |
+
pad_token_id=tokenizer.pad_token_id
|
| 172 |
+
)
|
| 173 |
+
generated = tokenizer.decode(out[0], skip_special_tokens=True).strip()
|
| 174 |
+
logger.info("=== Generated (raw) ===\n%s", generated[:2000])
|
| 175 |
except Exception as e:
|
| 176 |
+
logger.exception("Generation error: %s", e)
|
| 177 |
return f"AGENT ERROR: Generation failed: {e}"
|
| 178 |
|
| 179 |
+
# Extract JSON
|
| 180 |
+
parsed = self.extract_json(generated)
|
| 181 |
+
if not parsed:
|
| 182 |
+
# fallback: return "I do not know."
|
| 183 |
+
logger.warning("No valid JSON parsed from model output. Returning I do not know.")
|
| 184 |
+
return "I do not know."
|
| 185 |
+
|
| 186 |
+
# Ensure keys exist
|
| 187 |
+
thought = parsed.get("thought", "")
|
| 188 |
+
action = parsed.get("action", "None")
|
| 189 |
+
observation = parsed.get("observation", "")
|
| 190 |
+
answer = parsed.get("answer", "")
|
| 191 |
+
|
| 192 |
+
# If model asked to call Wikipedia tools, do it
|
| 193 |
+
tool_name, tool_arg = self.parse_action(action if action is not None else "")
|
| 194 |
+
if tool_name == "search":
|
| 195 |
try:
|
| 196 |
+
results = WikipediaTool.search(tool_arg, limit=3)
|
| 197 |
+
observation = json.dumps(results, ensure_ascii=False)
|
| 198 |
+
# if answer empty, try to set it to a succinct message
|
| 199 |
+
if not answer or str(answer).strip() in ["", "I do not know.", "None"]:
|
| 200 |
+
answer = f"Found {len(results)} wiki search results for '{tool_arg}'."
|
| 201 |
+
logger.info("β
Executed tool: Wikipedia.search('%s') -> %d results", tool_arg, len(results))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
except Exception as e:
|
| 203 |
+
observation = f"Wikipedia search error: {e}"
|
| 204 |
+
logger.exception("Wikipedia search error")
|
| 205 |
+
answer = "I do not know."
|
| 206 |
+
elif tool_name == "extract":
|
| 207 |
+
try:
|
| 208 |
+
res = WikipediaTool.get_extract(tool_arg, chars=1500)
|
| 209 |
+
observation = json.dumps(res, ensure_ascii=False)
|
| 210 |
+
if not answer or str(answer).strip() in ["", "I do not know.", "None"]:
|
| 211 |
+
answer = f"Extract fetched for '{res.get('title')}'."
|
| 212 |
+
logger.info("β
Executed tool: Wikipedia.get_extract('%s')", tool_arg)
|
| 213 |
+
except Exception as e:
|
| 214 |
+
observation = f"Wikipedia extract error: {e}"
|
| 215 |
+
logger.exception("Wikipedia extract error")
|
| 216 |
+
answer = "I do not know."
|
| 217 |
else:
|
| 218 |
+
# no tool or unrecognized action
|
| 219 |
+
logger.debug("No tool called or action unrecognized: %s", action)
|
| 220 |
|
| 221 |
+
# Final sanitization
|
| 222 |
+
if not answer or str(answer).strip() in ["", "None", "null"]:
|
| 223 |
+
answer = "I do not know."
|
|
|
|
|
|
|
|
|
|
| 224 |
|
| 225 |
# Log internal state
|
| 226 |
logger.info("π Thought: %s", thought)
|
| 227 |
logger.info("π§ Action: %s", action)
|
| 228 |
+
logger.info("π Observation: %s", observation if len(str(observation))<400 else str(observation)[:400]+"...")
|
| 229 |
+
logger.info("π Answer: %s", answer)
|
| 230 |
logger.info("-" * 60)
|
| 231 |
|
| 232 |
+
# Return only the answer string for submission (same behavior as before)
|
| 233 |
+
return answer
|
| 234 |
+
|
| 235 |
|
| 236 |
+
# --- Run & Submit ---
|
| 237 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
|
|
|
|
|
|
|
|
| 238 |
if profile:
|
| 239 |
username = profile.username
|
| 240 |
logger.info("User logged in: %s", username)
|
|
|
|
| 245 |
questions_url = f"{DEFAULT_API_URL}/questions"
|
| 246 |
submit_url = f"{DEFAULT_API_URL}/submit"
|
| 247 |
|
|
|
|
|
|
|
| 248 |
try:
|
| 249 |
response = requests.get(questions_url, timeout=15)
|
| 250 |
response.raise_for_status()
|
| 251 |
questions_data = response.json()
|
| 252 |
+
if not isinstance(questions_data, list):
|
| 253 |
+
logger.error("Unexpected questions_data format: %s", type(questions_data))
|
| 254 |
return "Fetched questions list is empty or invalid format.", None
|
| 255 |
except Exception as e:
|
| 256 |
+
logger.exception("Error fetching questions")
|
| 257 |
return f"Error fetching questions: {e}", None
|
| 258 |
|
| 259 |
+
agent = ReasoningAgent()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
results_log = []
|
| 261 |
answers_payload = []
|
|
|
|
| 262 |
|
| 263 |
+
logger.info("Running agent on %d questions...", len(questions_data))
|
| 264 |
for item in questions_data:
|
| 265 |
task_id = item.get("task_id")
|
| 266 |
question_text = item.get("question")
|
| 267 |
if not task_id or question_text is None:
|
| 268 |
+
logger.warning("Skipping invalid item: %s", item)
|
| 269 |
continue
|
| 270 |
try:
|
| 271 |
submitted_answer = agent(question_text)
|
|
|
|
| 276 |
"Submitted Answer": submitted_answer
|
| 277 |
})
|
| 278 |
except Exception as e:
|
| 279 |
+
logger.exception("Agent run error on task %s: %s", task_id, e)
|
| 280 |
results_log.append({
|
| 281 |
"Task ID": task_id,
|
| 282 |
"Question": question_text,
|
|
|
|
| 287 |
logger.warning("Agent did not produce any answers to submit.")
|
| 288 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 289 |
|
|
|
|
| 290 |
submission_data = {
|
| 291 |
"username": username.strip(),
|
| 292 |
"agent_code": f"https://huggingface.co/spaces/{os.getenv('SPACE_ID')}/tree/main",
|
| 293 |
"answers": answers_payload
|
| 294 |
}
|
| 295 |
+
logger.info("Submitting %d answers for user '%s' to %s ...", len(answers_payload), username, submit_url)
|
| 296 |
+
|
| 297 |
try:
|
| 298 |
+
resp = requests.post(submit_url, json=submission_data, timeout=60)
|
| 299 |
+
resp.raise_for_status()
|
| 300 |
+
result_data = resp.json()
|
| 301 |
final_status = (
|
| 302 |
f"Submission Successful!\n"
|
| 303 |
f"User: {result_data.get('username')}\n"
|
|
|
|
| 305 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
| 306 |
f"Message: {result_data.get('message', 'No message received.')}"
|
| 307 |
)
|
|
|
|
| 308 |
results_df = pd.DataFrame(results_log)
|
| 309 |
+
logger.info("Submission succeeded.")
|
| 310 |
return final_status, results_df
|
| 311 |
except requests.exceptions.HTTPError as e:
|
| 312 |
+
logger.exception("Submission HTTP error")
|
| 313 |
try:
|
| 314 |
+
detail = e.response.json()
|
|
|
|
| 315 |
except Exception:
|
| 316 |
detail = str(e)
|
|
|
|
| 317 |
results_df = pd.DataFrame(results_log)
|
| 318 |
+
return f"Submission Failed: {detail}", results_df
|
| 319 |
except Exception as e:
|
| 320 |
+
logger.exception("Submission error")
|
| 321 |
results_df = pd.DataFrame(results_log)
|
| 322 |
return f"Submission failed: {e}", results_df
|
| 323 |
|
| 324 |
+
|
| 325 |
# --- Gradio Interface ---
|
| 326 |
with gr.Blocks() as demo:
|
| 327 |
+
gr.Markdown("# Reasoning Agent Runner")
|
| 328 |
gr.Markdown(
|
| 329 |
"""
|
| 330 |
Instructions:
|
| 331 |
+
1. Login with Hugging Face.
|
| 332 |
2. Click 'Run Evaluation & Submit All Answers'.
|
| 333 |
+
3. The agent can call Wikipedia.search(...) and Wikipedia.get_extract(...).
|
| 334 |
"""
|
| 335 |
)
|
| 336 |
gr.LoginButton()
|
|
|
|
| 344 |
)
|
| 345 |
|
| 346 |
if __name__ == "__main__":
|
| 347 |
+
logger.info("Starting Gradio app...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 348 |
demo.launch(debug=True, share=False)
|