PacmanAI-2 / main.py
Marroco93's picture
no message
f12ecf0
raw
history blame
2.57 kB
from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from huggingface_hub import InferenceClient
import uvicorn
from typing import Generator
import json
import nltk
import os
from transformers import pipeline
# Set up the environment for NLTK
nltk.data.path.append(os.getenv('NLTK_DATA'))
# Initialize the FastAPI app
app = FastAPI()
# Initialize the InferenceClient with your model
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.2")
# Initialize the summarization pipeline
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
class Item(BaseModel):
prompt: str
history: list
system_prompt: str
temperature: float = 0.8
max_new_tokens: int = 12000
top_p: float = 0.15
repetition_penalty: float = 1.0
def summarize_history(history):
# Concatenate all history entries into a single string
full_history = " ".join(entry['content'] for entry in history if entry['role'] == 'user')
# Summarize the history
summarized_history = summarizer(full_history, max_length=1024, truncation=True)
return summarized_history[0]['summary_text']
def format_prompt(current_prompt, history):
formatted_history = "<s>"
formatted_history += f"[HISTORY] {history} [/HISTORY]"
formatted_history += f"[USER] {current_prompt} [/USER]</s>"
return formatted_history
def generate_stream(item: Item) -> Generator[bytes, None, None]:
summarized_history = summarize_history(item.history)
formatted_prompt = format_prompt(item.prompt, summarized_history)
input_token_count = len(nltk.word_tokenize(formatted_prompt))
max_tokens_allowed = 32768
max_new_tokens_adjusted = max(1, min(item.max_new_tokens, max_tokens_allowed - input_token_count))
generate_kwargs = {
"temperature": item.temperature,
"max_new_tokens": max_new_tokens_adjusted,
"top_p": item.top_p,
"repetition_penalty": item.repetition_penalty,
"do_sample": True,
"seed": 42,
}
for response in client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True):
chunk = {
"text": response.token.text,
"complete": response.generated_text is not None
}
yield json.dumps(chunk).encode("utf-8") + b"\n"
@app.post("/generate/")
async def generate_text(item: Item):
return StreamingResponse(generate_stream(item), media_type="application/x-ndjson")
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)