Marroco93 commited on
Commit
f12ecf0
·
1 Parent(s): 4849bdc

no message

Browse files
Files changed (2) hide show
  1. main.py +19 -16
  2. requirements.txt +2 -1
main.py CHANGED
@@ -4,18 +4,23 @@ from pydantic import BaseModel
4
  from huggingface_hub import InferenceClient
5
  import uvicorn
6
  from typing import Generator
7
- import json # Asegúrate de que esta línea esté al principio del archivo
8
  import nltk
9
  import os
 
10
 
11
-
12
  nltk.data.path.append(os.getenv('NLTK_DATA'))
13
 
 
14
  app = FastAPI()
15
 
16
  # Initialize the InferenceClient with your model
17
  client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.2")
18
 
 
 
 
19
  class Item(BaseModel):
20
  prompt: str
21
  history: list
@@ -25,23 +30,24 @@ class Item(BaseModel):
25
  top_p: float = 0.15
26
  repetition_penalty: float = 1.0
27
 
 
 
 
 
 
 
 
28
  def format_prompt(current_prompt, history):
29
  formatted_history = "<s>"
30
- for entry in history:
31
- if entry["role"] == "user":
32
- formatted_history += f"[USER] {entry['content']} [/USER]"
33
- elif entry["role"] == "assistant":
34
- formatted_history += f"[ASSISTANT] {entry['content']} [/ASSISTANT]"
35
  formatted_history += f"[USER] {current_prompt} [/USER]</s>"
36
  return formatted_history
37
 
38
-
39
  def generate_stream(item: Item) -> Generator[bytes, None, None]:
40
- formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history)
41
- # Estimate token count for the formatted_prompt
42
- input_token_count = len(nltk.word_tokenize(formatted_prompt)) # NLTK tokenization
43
 
44
- # Ensure total token count doesn't exceed the maximum limit
45
  max_tokens_allowed = 32768
46
  max_new_tokens_adjusted = max(1, min(item.max_new_tokens, max_tokens_allowed - input_token_count))
47
 
@@ -54,18 +60,15 @@ def generate_stream(item: Item) -> Generator[bytes, None, None]:
54
  "seed": 42,
55
  }
56
 
57
- # Stream the response from the InferenceClient
58
  for response in client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True):
59
- # This assumes 'details=True' gives you a structure where you can access the text like this
60
  chunk = {
61
  "text": response.token.text,
62
- "complete": response.generated_text is not None # Adjust based on how you detect completion
63
  }
64
  yield json.dumps(chunk).encode("utf-8") + b"\n"
65
 
66
  @app.post("/generate/")
67
  async def generate_text(item: Item):
68
- # Stream response back to the client
69
  return StreamingResponse(generate_stream(item), media_type="application/x-ndjson")
70
 
71
  if __name__ == "__main__":
 
4
  from huggingface_hub import InferenceClient
5
  import uvicorn
6
  from typing import Generator
7
+ import json
8
  import nltk
9
  import os
10
+ from transformers import pipeline
11
 
12
+ # Set up the environment for NLTK
13
  nltk.data.path.append(os.getenv('NLTK_DATA'))
14
 
15
+ # Initialize the FastAPI app
16
  app = FastAPI()
17
 
18
  # Initialize the InferenceClient with your model
19
  client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.2")
20
 
21
+ # Initialize the summarization pipeline
22
+ summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
23
+
24
  class Item(BaseModel):
25
  prompt: str
26
  history: list
 
30
  top_p: float = 0.15
31
  repetition_penalty: float = 1.0
32
 
33
+ def summarize_history(history):
34
+ # Concatenate all history entries into a single string
35
+ full_history = " ".join(entry['content'] for entry in history if entry['role'] == 'user')
36
+ # Summarize the history
37
+ summarized_history = summarizer(full_history, max_length=1024, truncation=True)
38
+ return summarized_history[0]['summary_text']
39
+
40
  def format_prompt(current_prompt, history):
41
  formatted_history = "<s>"
42
+ formatted_history += f"[HISTORY] {history} [/HISTORY]"
 
 
 
 
43
  formatted_history += f"[USER] {current_prompt} [/USER]</s>"
44
  return formatted_history
45
 
 
46
  def generate_stream(item: Item) -> Generator[bytes, None, None]:
47
+ summarized_history = summarize_history(item.history)
48
+ formatted_prompt = format_prompt(item.prompt, summarized_history)
49
+ input_token_count = len(nltk.word_tokenize(formatted_prompt))
50
 
 
51
  max_tokens_allowed = 32768
52
  max_new_tokens_adjusted = max(1, min(item.max_new_tokens, max_tokens_allowed - input_token_count))
53
 
 
60
  "seed": 42,
61
  }
62
 
 
63
  for response in client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True):
 
64
  chunk = {
65
  "text": response.token.text,
66
+ "complete": response.generated_text is not None
67
  }
68
  yield json.dumps(chunk).encode("utf-8") + b"\n"
69
 
70
  @app.post("/generate/")
71
  async def generate_text(item: Item):
 
72
  return StreamingResponse(generate_stream(item), media_type="application/x-ndjson")
73
 
74
  if __name__ == "__main__":
requirements.txt CHANGED
@@ -3,4 +3,5 @@ uvicorn
3
  huggingface_hub
4
  pydantic
5
  torch==2.0.0
6
- nltk
 
 
3
  huggingface_hub
4
  pydantic
5
  torch==2.0.0
6
+ nltk
7
+ transformers