Ancient_Greek_Word2Vec / word2vec.py
Mark7549's picture
fixed bug where n was always 10 in nearest neighbours function
d2c01c1
from gensim.models import Word2Vec
from collections import defaultdict
import os
def load_all_models():
'''
Load all word2vec models
'''
archaic = ('archaic', load_word2vec_model('models/archaic_cbow.model'))
classical = ('classical', load_word2vec_model('models/classical_cbow.model'))
early_roman = ('early_roman', load_word2vec_model('models/early_roman_cbow.model'))
hellen = ('hellen', load_word2vec_model('models/hellen_cbow.model'))
late_roman = ('late_roman', load_word2vec_model('models/late_roman_cbow.model'))
return [archaic, classical, early_roman, hellen, late_roman]
def load_word2vec_model(model_path):
'''
Load a word2vec model from a file
'''
return Word2Vec.load(model_path)
def get_word_vector(model, word):
'''
Return the word vector of a word
'''
return model.wv[word]
def iterate_over_words(model):
'''
Iterate over all words in the vocabulary and print their vectors
'''
index = 0
for word, index in model.wv.key_to_index.items():
vector = get_word_vector(model, word)
print(f'{index} Word: {word}, Vector: {vector}')
index += 1
def model_dictionary(model):
'''
Return the dictionary of the word2vec model
Key is the word and value is the vector of the word
'''
dict = defaultdict(list)
for word, index in model.wv.key_to_index.items():
vector = get_word_vector(model, word)
dict[word] = vector
return dict
def dot_product(vector_a, vector_b):
'''
Return the dot product of two vectors
'''
return sum(a * b for a, b in zip(vector_a, vector_b))
def magnitude(vector):
'''
Return the magnitude of a vector
'''
return sum(x**2 for x in vector) ** 0.5
def cosine_similarity(vector_a, vector_b):
'''
Return the cosine similarity of two vectors
'''
dot_prod = dot_product(vector_a, vector_b)
mag_a = magnitude(vector_a)
mag_b = magnitude(vector_b)
# Avoid division by zero
if mag_a == 0 or mag_b == 0:
return 0.0
similarity = dot_prod / (mag_a * mag_b)
return similarity
def get_cosine_similarity(word1, word2, time_slice):
'''
Return the cosine similarity of two words
'''
# TO DO: MOET NETTER
# Return if path does not exist
if not os.path.exists(f'models/{time_slice}.model'):
return
model = load_word2vec_model(f'models/{time_slice}.model')
dict = model_dictionary(model)
return cosine_similarity(dict[word1], dict[word2])
def get_cosine_similarity_one_word(word, time_slice1, time_slice2):
'''
Return the cosine similarity of one word in two different time slices
'''
# Return if path does not exist
if not os.path.exists(f'models/{time_slice1}.model') or not os.path.exists(f'models/{time_slice2}.model'):
return
model1 = load_word2vec_model(f'models/{time_slice1}.model')
model2 = load_word2vec_model(f'models/{time_slice2}.model')
dict1 = model_dictionary(model1)
dict2 = model_dictionary(model2)
return cosine_similarity(dict1[word], dict2[word])
def get_nearest_neighbours(word, time_slice_model, n=10, models=load_all_models()):
'''
Return the nearest neighbours of a word
word: the word for which the nearest neighbours are calculated
time_slice_model: the word2vec model of the time slice of the input word
models: list of tuples with the name of the time slice and the word2vec model (default: all in ./models)
n: the number of nearest neighbours to return (default: 10)
Return: list of tuples with the word, the time slice and
the cosine similarity of the nearest neighbours
'''
time_slice_model = load_word2vec_model(f'models/{time_slice_model}.model')
vector_1 = get_word_vector(time_slice_model, word)
nearest_neighbours = []
# Iterate over all models
for model in models:
model_name = model[0]
model = model[1]
# Iterate over all words of the model
for word, index in model.wv.key_to_index.items():
# Vector of the current word
vector_2 = get_word_vector(model, word)
# Calculate the cosine similarity between current word and input word
cosine_similarity_vectors = cosine_similarity(vector_1, vector_2)
# If the list of nearest neighbours is not full yet, add the current word
if len(nearest_neighbours) < n:
nearest_neighbours.append((word, model_name, cosine_similarity_vectors))
# If the list of nearest neighbours is full, replace the word with the smallest cosine similarity
else:
smallest_neighbour = min(nearest_neighbours, key=lambda x: x[2])
if cosine_similarity_vectors > smallest_neighbour[2]:
nearest_neighbours.remove(smallest_neighbour)
nearest_neighbours.append((word, model_name, cosine_similarity_vectors))
return sorted(nearest_neighbours, key=lambda x: x[2], reverse=True)
def main():
# model = load_word2vec_model('models/archaic_cbow.model')
# archaic_cbow_dict = model_dictionary(model)
# score = cosine_similarity(archaic_cbow_dict['Πελοπόννησος'], archaic_cbow_dict['σπάργανον'])
# print(score)
archaic = ('archaic', load_word2vec_model('models/archaic_cbow.model'))
classical = ('classical', load_word2vec_model('models/classical_cbow.model'))
early_roman = ('early_roman', load_word2vec_model('models/early_roman_cbow.model'))
hellen = ('hellen', load_word2vec_model('models/hellen_cbow.model'))
late_roman = ('late_roman', load_word2vec_model('models/late_roman_cbow.model'))
models = [archaic, classical, early_roman, hellen, late_roman]
nearest_neighbours = get_nearest_neighbours('πατήρ', archaic[1], models, n=5)
print(nearest_neighbours)
# vector = get_word_vector(model, 'ἀνήρ')
# print(vector)
# Iterate over all words and print their vectors
# iterate_over_words(model)
if __name__ == "__main__":
main()