FixedF1 / fixed_f1.py
John Graham Reynolds
add file basics
4ab442f
raw
history blame
2.71 kB
import datasets
import evaluate
from evaluate import evaluator, Metric
# from evaluate.metrics.f1 import F1
from sklearn.metrics import f1_score
_CITATION = """
@online{MarioBarbeque@HuggingFace,
author = {John Graham Reynolds aka @MarioBarbeque},
title = {{Fixed F1 Hugging Face Metric},
year = 2024,
url = {https://huggingface.co/spaces/MarioBarbeque/FixedF1},
urldate = {0000-00-00}
}
"""
# could in principle subclass F1, but ideally we can work the fix into the HF main F1 class to maintain SOLID code
class FixedF1(evaluate.Metric):
def __init__(self, average="binary"):
super().__init__()
self.average = average
# additional values passed to compute() could and probably should (?) all be passed here so that the final computation is configured immediately at Metric instantiation
def _info(self):
return evaluate.MetricInfo(
description="Custom built F1 metric for true *multilabel* classification - the 'multilabel' config_name var in the evaluate.EvaluationModules class appears to better address multi-class classification, where features can fall under a plethora of labels. This class is implemented with the intention of enabling the evaluation of multiple multilabel classification metrics at the same time using the evaluate.CombinedEvaluations.combine method.",
citation="",
inputs_description="'average': This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Options include: {‘micro’, ‘macro’, ‘samples’, ‘weighted’, ‘binary’} or None.",
features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("int32")),
"references": datasets.Sequence(datasets.Value("int32")),
}
if self.config_name == "multilabel"
else {
"predictions": datasets.Value("int32"),
"references": datasets.Value("int32"),
}
),
reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"],
)
# could remove specific kwargs like average, sample_weight from _compute() method of F1
def _compute(self, predictions, references, labels=None, pos_label=1, average="binary", sample_weight=None):
score = f1_score(
references, predictions, labels=labels, pos_label=pos_label, average=self.average, sample_weight=sample_weight
)
return {"f1": float(score) if score.size == 1 else score}