Spaces:
Sleeping
Sleeping
John Graham Reynolds
commited on
Commit
·
4ab442f
1
Parent(s):
7b47670
add file basics
Browse files- README.md +2 -2
- fixed_f1.py +51 -0
- requirements.txt +3 -0
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
title: FixedF1
|
3 |
emoji: 📈
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.5.0
|
8 |
app_file: app.py
|
|
|
1 |
---
|
2 |
title: FixedF1
|
3 |
emoji: 📈
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: purple
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.5.0
|
8 |
app_file: app.py
|
fixed_f1.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datasets
|
2 |
+
import evaluate
|
3 |
+
from evaluate import evaluator, Metric
|
4 |
+
# from evaluate.metrics.f1 import F1
|
5 |
+
from sklearn.metrics import f1_score
|
6 |
+
|
7 |
+
|
8 |
+
_CITATION = """
|
9 |
+
@online{MarioBarbeque@HuggingFace,
|
10 |
+
author = {John Graham Reynolds aka @MarioBarbeque},
|
11 |
+
title = {{Fixed F1 Hugging Face Metric},
|
12 |
+
year = 2024,
|
13 |
+
url = {https://huggingface.co/spaces/MarioBarbeque/FixedF1},
|
14 |
+
urldate = {0000-00-00}
|
15 |
+
}
|
16 |
+
"""
|
17 |
+
|
18 |
+
# could in principle subclass F1, but ideally we can work the fix into the HF main F1 class to maintain SOLID code
|
19 |
+
class FixedF1(evaluate.Metric):
|
20 |
+
|
21 |
+
def __init__(self, average="binary"):
|
22 |
+
super().__init__()
|
23 |
+
self.average = average
|
24 |
+
# additional values passed to compute() could and probably should (?) all be passed here so that the final computation is configured immediately at Metric instantiation
|
25 |
+
|
26 |
+
def _info(self):
|
27 |
+
return evaluate.MetricInfo(
|
28 |
+
description="Custom built F1 metric for true *multilabel* classification - the 'multilabel' config_name var in the evaluate.EvaluationModules class appears to better address multi-class classification, where features can fall under a plethora of labels. This class is implemented with the intention of enabling the evaluation of multiple multilabel classification metrics at the same time using the evaluate.CombinedEvaluations.combine method.",
|
29 |
+
citation="",
|
30 |
+
inputs_description="'average': This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Options include: {‘micro’, ‘macro’, ‘samples’, ‘weighted’, ‘binary’} or None.",
|
31 |
+
features=datasets.Features(
|
32 |
+
{
|
33 |
+
"predictions": datasets.Sequence(datasets.Value("int32")),
|
34 |
+
"references": datasets.Sequence(datasets.Value("int32")),
|
35 |
+
}
|
36 |
+
if self.config_name == "multilabel"
|
37 |
+
else {
|
38 |
+
"predictions": datasets.Value("int32"),
|
39 |
+
"references": datasets.Value("int32"),
|
40 |
+
}
|
41 |
+
),
|
42 |
+
reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"],
|
43 |
+
)
|
44 |
+
|
45 |
+
# could remove specific kwargs like average, sample_weight from _compute() method of F1
|
46 |
+
|
47 |
+
def _compute(self, predictions, references, labels=None, pos_label=1, average="binary", sample_weight=None):
|
48 |
+
score = f1_score(
|
49 |
+
references, predictions, labels=labels, pos_label=pos_label, average=self.average, sample_weight=sample_weight
|
50 |
+
)
|
51 |
+
return {"f1": float(score) if score.size == 1 else score}
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
scikit-learn
|
2 |
+
evaluate
|
3 |
+
datasets
|