text-sentiment-api / README.md
Mariannaincolour's picture
Add Hugging Face Space config header
deda593

A newer version of the Gradio SDK is available: 5.34.2

Upgrade
metadata
title: Text Sentiment Classifier
emoji: 🧠
sdk: gradio
app_file: app.py

Text-Sentiment-Classifier-API

This project is a simple REST API for sentiment analysis built with FastAPI and HuggingFace Transformers. It uses the distilbert-base-uncased-finetuned-sst-2-english model to classify English text as positive, negative or (rarely) neutral, and it returns a confidence score.

πŸš€ Features

  • RESTful API with FastAPI

  • Pre-trained BERT-based sentiment model

  • JSON input and output

  • Interactive Swagger UI at /docs

πŸ“¦ Model

The API uses:

distilbert-base-uncased-finetuned-sst-2-english

A lightweight version of BERT fine-tuned on the SST-2 dataset for sentiment classification.

Example

Request: POST /predict { "text": "I absolutely love this product!" }

Response: { "sentiment": "positive", "confidence": 0.9981 }

πŸ“ File Structure

.
β”œβ”€β”€ main.py # API implementation
β”œβ”€β”€ requirements.txt # Python dependencies
└── README.md # Project documentation

πŸš€ How to Use

  1. Enter any English sentence in the input box
  2. Click Submit
  3. View the sentiment label and confidence

πŸš€ How to Deploy on Hugging Face Spaces

  1. Create a Hugging Face account
    Sign up at https://huggingface.co/join

  2. Create a new Space Go to https://huggingface.co/spaces and click Create new Space

  3. Fill out the form

    • Space name: text-sentiment-api (or your choice)
    • SDK: Gradio
    • Visibility: Public or Private
  4. Upload the files

    • app.py
    • requirements.txt
    • README.md (this file)
  5. Wait for the build Hugging Face will automatically install dependencies and launch the app

  6. Access your app