MariaK's picture
Added check for model cards with no metric
11b003a
raw
history blame
7.84 kB
import gradio as gr
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load
import requests
import re
import pandas as pd
from huggingface_hub import ModelCard
import os
def pass_emoji(passed):
if passed is True:
passed = "โœ…"
else:
passed = "โŒ"
return passed
api = HfApi()
USERNAMES_DATASET_ID = "huggingface-course/audio-course-u7-hands-on"
HF_TOKEN = os.environ.get("HF_TOKEN")
def get_user_models(hf_username, task):
"""
List the user's models for a given task
:param hf_username: User HF username
"""
models = api.list_models(author=hf_username, filter=[task])
user_model_ids = [x.modelId for x in models]
match task:
case "audio-classification":
dataset = 'marsyas/gtzan'
case "automatic-speech-recognition":
dataset = 'PolyAI/minds14'
case "text-to-speech":
dataset = ""
case _:
print("Unsupported task")
dataset_specific_models = []
if dataset == "":
return user_model_ids
else:
for model in user_model_ids:
meta = get_metadata(model)
if meta is None:
continue
try:
if meta["datasets"] == [dataset]:
dataset_specific_models.append(model)
except:
continue
return dataset_specific_models
def calculate_best_result(user_models, task):
"""
Calculate the best results of a unit for a given task
:param user_model_ids: models of a user
"""
best_model = ""
if task == "audio-classification":
best_result = -100
larger_is_better = True
elif task == "automatic-speech-recognition":
best_result = 100
larger_is_better = False
for model in user_models:
meta = get_metadata(model)
if meta is None:
continue
metric = parse_metrics(model, task)
if metric == None:
continue
if larger_is_better:
if metric > best_result:
best_result = metric
best_model = meta['model-index'][0]["name"]
else:
if metric < best_result:
best_result = metric
best_model = meta['model-index'][0]["name"]
return best_result, best_model
def get_metadata(model_id):
"""
Get model metadata (contains evaluation data)
:param model_id
"""
try:
readme_path = hf_hub_download(model_id, filename="README.md")
return metadata_load(readme_path)
except requests.exceptions.HTTPError:
# 404 README.md not found
return None
def extract_metric(model_card_content, task):
"""
Extract the metric value from the models' model card
:param model_card_content: model card content
"""
accuracy_pattern = r"(?:Accuracy|eval_accuracy): (\d+\.\d+)"
wer_pattern = r"Wer: (\d+\.\d+)"
if task == "audio-classification":
pattern = accuracy_pattern
elif task == "automatic-speech-recognition":
pattern = wer_pattern
match = re.search(pattern, model_card_content)
if match:
metric = match.group(1)
return float(metric)
else:
return None
def parse_metrics(model, task):
"""
Get model card and parse it
:param model_id: model id
"""
card = ModelCard.load(model)
return extract_metric(card.content, task)
def certification(hf_username):
results_certification = [
{
"unit": "Unit 4: Audio Classification",
"task": "audio-classification",
"baseline_metric": 0.87,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
{
"unit": "Unit 5: Automatic Speech Recognition",
"task": "automatic-speech-recognition",
"baseline_metric": 0.37,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
{
"unit": "Unit 6: Text-to-Speech",
"task": "text-to-speech",
"baseline_metric": 0,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
{
"unit": "Unit 7: Audio applications",
"task": "demo",
"baseline_metric": 0,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
]
for unit in results_certification:
unit["passed"] = pass_emoji(unit["passed_"])
match unit["task"]:
case "audio-classification":
try:
user_ac_models = get_user_models(hf_username, task = "audio-classification")
best_result, best_model_id = calculate_best_result(user_ac_models, task = "audio-classification")
unit["best_result"] = best_result
unit["best_model_id"] = best_model_id
if unit["best_result"] >= unit["baseline_metric"]:
unit["passed_"] = True
unit["passed"] = pass_emoji(unit["passed_"])
except: print("Either no relevant models found, or no metrics in the model card for audio classificaiton")
case "automatic-speech-recognition":
try:
user_asr_models = get_user_models(hf_username, task = "automatic-speech-recognition")
best_result, best_model_id = calculate_best_result(user_asr_models, task = "automatic-speech-recognition")
unit["best_result"] = best_result
unit["best_model_id"] = best_model_id
if unit["best_result"] <= unit["baseline_metric"]:
unit["passed_"] = True
unit["passed"] = pass_emoji(unit["passed_"])
except: print("Either no relevant models found, or no metrics in the model card for automatic speech recognition")
case "text-to-speech":
try:
user_tts_models = get_user_models(hf_username, task = "text-to-speech")
if user_tts_models:
unit["best_result"] = 0
unit["best_model_id"] = user_tts_models[0]
unit["passed_"] = True
unit["passed"] = pass_emoji(unit["passed_"])
except: print("Either no relevant models found, or no metrics in the model card for automatic speech recognition")
case "demo":
u7_usernames = hf_hub_download(USERNAMES_DATASET_ID, repo_type = "dataset", filename="usernames.csv", token=HF_TOKEN)
u7_users = pd.read_csv(u7_usernames)
if hf_username in u7_users['username'].tolist():
unit["best_result"] = 0
unit["best_model_id"] = "Demo check passed, no model id"
unit["passed_"] = True
unit["passed"] = pass_emoji(unit["passed_"])
case _:
print("Unknown task")
print(results_certification)
df = pd.DataFrame(results_certification)
df = df[['passed', 'unit', 'task', 'baseline_metric', 'best_result', 'best_model_id']]
return df
with gr.Blocks() as demo:
gr.Markdown(f"""
# ๐Ÿ† Check your progress in the Audio Course ๐Ÿ†
- To get a certificate of completion, you must **pass 3 out of 4 assignments before September 1st 2023**.
- To get an honors certificate, you must **pass 4 out of 4 assignments before September 1st 2023**.
For the assignments where you have to train a model, your model's metric should be equal to or better than the baseline metric.
For the Unit 7 assignment, first, check your demo with the [Unit 7 assessment space](https://huggingface.co/spaces/huggingface-course/audio-course-u7-assessment)
Make sure that you have uploaded your model(s) to Hub, and that your Unit 7 demo is public.
To check your progress, type your Hugging Face Username here (in my case MariaK)
""")
hf_username = gr.Textbox(placeholder="MariaK", label="Your Hugging Face Username")
check_progress_button = gr.Button(value="Check my progress")
output = gr.components.Dataframe(value=certification(hf_username))
check_progress_button.click(fn=certification, inputs=hf_username, outputs=output)
demo.launch()