|
import gradio as gr |
|
from huggingface_hub import HfApi, hf_hub_download |
|
from huggingface_hub.repocard import metadata_load |
|
import requests |
|
import re |
|
import pandas as pd |
|
from huggingface_hub import ModelCard |
|
import os |
|
|
|
|
|
def pass_emoji(passed): |
|
if passed is True: |
|
passed = "โ
" |
|
else: |
|
passed = "โ" |
|
return passed |
|
|
|
api = HfApi() |
|
USERNAMES_DATASET_ID = "huggingface-course/audio-course-u7-hands-on" |
|
HF_TOKEN = os.environ.get("HF_TOKEN") |
|
|
|
|
|
def get_user_models(hf_username, task): |
|
""" |
|
List the user's models for a given task |
|
:param hf_username: User HF username |
|
""" |
|
models = api.list_models(author=hf_username, filter=[task]) |
|
user_model_ids = [x.modelId for x in models] |
|
|
|
match task: |
|
case "audio-classification": |
|
dataset = 'marsyas/gtzan' |
|
case "automatic-speech-recognition": |
|
dataset = 'PolyAI/minds14' |
|
case "text-to-speech": |
|
dataset = "" |
|
case _: |
|
print("Unsupported task") |
|
|
|
dataset_specific_models = [] |
|
|
|
if dataset == "": |
|
return user_model_ids |
|
else: |
|
for model in user_model_ids: |
|
meta = get_metadata(model) |
|
if meta is None: |
|
continue |
|
try: |
|
if meta["datasets"] == [dataset]: |
|
dataset_specific_models.append(model) |
|
except: |
|
continue |
|
return dataset_specific_models |
|
|
|
def calculate_best_result(user_models, task): |
|
""" |
|
Calculate the best results of a unit for a given task |
|
:param user_model_ids: models of a user |
|
""" |
|
|
|
best_model = "" |
|
|
|
if task == "audio-classification": |
|
best_result = -100 |
|
larger_is_better = True |
|
elif task == "automatic-speech-recognition": |
|
best_result = 100 |
|
larger_is_better = False |
|
|
|
for model in user_models: |
|
meta = get_metadata(model) |
|
if meta is None: |
|
continue |
|
metric = parse_metrics(model, task) |
|
|
|
if metric == None: |
|
continue |
|
|
|
if larger_is_better: |
|
if metric > best_result: |
|
best_result = metric |
|
best_model = meta['model-index'][0]["name"] |
|
else: |
|
if metric < best_result: |
|
best_result = metric |
|
best_model = meta['model-index'][0]["name"] |
|
|
|
return best_result, best_model |
|
|
|
|
|
def get_metadata(model_id): |
|
""" |
|
Get model metadata (contains evaluation data) |
|
:param model_id |
|
""" |
|
try: |
|
readme_path = hf_hub_download(model_id, filename="README.md") |
|
return metadata_load(readme_path) |
|
except requests.exceptions.HTTPError: |
|
|
|
return None |
|
|
|
|
|
def extract_metric(model_card_content, task): |
|
""" |
|
Extract the metric value from the models' model card |
|
:param model_card_content: model card content |
|
""" |
|
accuracy_pattern = r"(?:Accuracy|eval_accuracy): (\d+\.\d+)" |
|
wer_pattern = r"Wer: (\d+\.\d+)" |
|
|
|
if task == "audio-classification": |
|
pattern = accuracy_pattern |
|
elif task == "automatic-speech-recognition": |
|
pattern = wer_pattern |
|
|
|
match = re.search(pattern, model_card_content) |
|
if match: |
|
metric = match.group(1) |
|
return float(metric) |
|
else: |
|
return None |
|
|
|
|
|
def parse_metrics(model, task): |
|
""" |
|
Get model card and parse it |
|
:param model_id: model id |
|
""" |
|
card = ModelCard.load(model) |
|
return extract_metric(card.content, task) |
|
|
|
|
|
def certification(hf_username): |
|
results_certification = [ |
|
{ |
|
"unit": "Unit 4: Audio Classification", |
|
"task": "audio-classification", |
|
"baseline_metric": 0.87, |
|
"best_result": 0, |
|
"best_model_id": "", |
|
"passed_": False |
|
}, |
|
{ |
|
"unit": "Unit 5: Automatic Speech Recognition", |
|
"task": "automatic-speech-recognition", |
|
"baseline_metric": 0.37, |
|
"best_result": 0, |
|
"best_model_id": "", |
|
"passed_": False |
|
}, |
|
{ |
|
"unit": "Unit 6: Text-to-Speech", |
|
"task": "text-to-speech", |
|
"baseline_metric": 0, |
|
"best_result": 0, |
|
"best_model_id": "", |
|
"passed_": False |
|
}, |
|
{ |
|
"unit": "Unit 7: Audio applications", |
|
"task": "demo", |
|
"baseline_metric": 0, |
|
"best_result": 0, |
|
"best_model_id": "", |
|
"passed_": False |
|
}, |
|
] |
|
|
|
for unit in results_certification: |
|
unit["passed"] = pass_emoji(unit["passed_"]) |
|
|
|
match unit["task"]: |
|
case "audio-classification": |
|
try: |
|
user_ac_models = get_user_models(hf_username, task = "audio-classification") |
|
best_result, best_model_id = calculate_best_result(user_ac_models, task = "audio-classification") |
|
unit["best_result"] = best_result |
|
unit["best_model_id"] = best_model_id |
|
if unit["best_result"] >= unit["baseline_metric"]: |
|
unit["passed_"] = True |
|
unit["passed"] = pass_emoji(unit["passed_"]) |
|
except: print("Either no relevant models found, or no metrics in the model card for audio classificaiton") |
|
case "automatic-speech-recognition": |
|
try: |
|
user_asr_models = get_user_models(hf_username, task = "automatic-speech-recognition") |
|
best_result, best_model_id = calculate_best_result(user_asr_models, task = "automatic-speech-recognition") |
|
unit["best_result"] = best_result |
|
unit["best_model_id"] = best_model_id |
|
if unit["best_result"] <= unit["baseline_metric"]: |
|
unit["passed_"] = True |
|
unit["passed"] = pass_emoji(unit["passed_"]) |
|
except: print("Either no relevant models found, or no metrics in the model card for automatic speech recognition") |
|
case "text-to-speech": |
|
try: |
|
user_tts_models = get_user_models(hf_username, task = "text-to-speech") |
|
if user_tts_models: |
|
unit["best_result"] = 0 |
|
unit["best_model_id"] = user_tts_models[0] |
|
unit["passed_"] = True |
|
unit["passed"] = pass_emoji(unit["passed_"]) |
|
except: print("Either no relevant models found, or no metrics in the model card for automatic speech recognition") |
|
case "demo": |
|
u7_usernames = hf_hub_download(USERNAMES_DATASET_ID, repo_type = "dataset", filename="usernames.csv", token=HF_TOKEN) |
|
u7_users = pd.read_csv(u7_usernames) |
|
if hf_username in u7_users['username'].tolist(): |
|
unit["best_result"] = 0 |
|
unit["best_model_id"] = "Demo check passed, no model id" |
|
unit["passed_"] = True |
|
unit["passed"] = pass_emoji(unit["passed_"]) |
|
case _: |
|
print("Unknown task") |
|
|
|
print(results_certification) |
|
|
|
df = pd.DataFrame(results_certification) |
|
df = df[['passed', 'unit', 'task', 'baseline_metric', 'best_result', 'best_model_id']] |
|
return df |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(f""" |
|
# ๐ Check your progress in the Audio Course ๐ |
|
|
|
- To get a certificate of completion, you must **pass 3 out of 4 assignments before September 1st 2023**. |
|
- To get an honors certificate, you must **pass 4 out of 4 assignments before September 1st 2023**. |
|
|
|
For the assignments where you have to train a model, your model's metric should be equal to or better than the baseline metric. |
|
For the Unit 7 assignment, first, check your demo with the [Unit 7 assessment space](https://huggingface.co/spaces/huggingface-course/audio-course-u7-assessment) |
|
|
|
Make sure that you have uploaded your model(s) to Hub, and that your Unit 7 demo is public. |
|
To check your progress, type your Hugging Face Username here (in my case MariaK) |
|
""") |
|
|
|
hf_username = gr.Textbox(placeholder="MariaK", label="Your Hugging Face Username") |
|
check_progress_button = gr.Button(value="Check my progress") |
|
output = gr.components.Dataframe(value=certification(hf_username)) |
|
check_progress_button.click(fn=certification, inputs=hf_username, outputs=output) |
|
|
|
demo.launch() |