import gradio as gr from huggingface_hub import HfApi, hf_hub_download from huggingface_hub.repocard import metadata_load import requests import re import pandas as pd from huggingface_hub import ModelCard import os def pass_emoji(passed): if passed is True: passed = "✅" else: passed = "❌" return passed api = HfApi() USERNAMES_DATASET_ID = "huggingface-course/audio-course-u7-hands-on" HF_TOKEN = os.environ.get("HF_TOKEN") def get_user_models(hf_username, task): """ List the user's models for a given task :param hf_username: User HF username """ models = api.list_models(author=hf_username, filter=[task]) user_model_ids = [x.modelId for x in models] match task: case "audio-classification": dataset = 'marsyas/gtzan' case "automatic-speech-recognition": dataset = 'PolyAI/minds14' case "text-to-speech": dataset = "" case _: print("Unsupported task") dataset_specific_models = [] if dataset == "": return user_model_ids else: for model in user_model_ids: meta = get_metadata(model) if meta is None: continue try: if meta["datasets"] == [dataset]: dataset_specific_models.append(model) except: continue return dataset_specific_models def calculate_best_result(user_models, task): """ Calculate the best results of a unit for a given task :param user_model_ids: models of a user """ best_model = "" if task == "audio-classification": best_result = -100 larger_is_better = True elif task == "automatic-speech-recognition": best_result = 100 larger_is_better = False for model in user_models: meta = get_metadata(model) if meta is None: continue metric = parse_metrics(model, task) if metric == None: continue if larger_is_better: if metric > best_result: best_result = metric best_model = meta['model-index'][0]["name"] else: if metric < best_result: best_result = metric best_model = meta['model-index'][0]["name"] return best_result, best_model def get_metadata(model_id): """ Get model metadata (contains evaluation data) :param model_id """ try: readme_path = hf_hub_download(model_id, filename="README.md") return metadata_load(readme_path) except requests.exceptions.HTTPError: # 404 README.md not found return None def extract_metric(model_card_content, task): """ Extract the metric value from the models' model card :param model_card_content: model card content """ accuracy_pattern = r"(?:Accuracy|eval_accuracy): (\d+\.\d+)" wer_pattern = r"Wer: (\d+\.\d+)" if task == "audio-classification": pattern = accuracy_pattern elif task == "automatic-speech-recognition": pattern = wer_pattern match = re.search(pattern, model_card_content) if match: metric = match.group(1) return float(metric) else: return None def parse_metrics(model, task): """ Get model card and parse it :param model_id: model id """ card = ModelCard.load(model) return extract_metric(card.content, task) def certification(hf_username): results_certification = [ { "unit": "Unit 4: Audio Classification", "task": "audio-classification", "baseline_metric": 0.87, "best_result": 0, "best_model_id": "", "passed_": False }, { "unit": "Unit 5: Automatic Speech Recognition", "task": "automatic-speech-recognition", "baseline_metric": 0.37, "best_result": 0, "best_model_id": "", "passed_": False }, { "unit": "Unit 6: Text-to-Speech", "task": "text-to-speech", "baseline_metric": 0, "best_result": 0, "best_model_id": "", "passed_": False }, { "unit": "Unit 7: Audio applications", "task": "demo", "baseline_metric": 0, "best_result": 0, "best_model_id": "", "passed_": False }, ] for unit in results_certification: unit["passed"] = pass_emoji(unit["passed_"]) match unit["task"]: case "audio-classification": try: user_ac_models = get_user_models(hf_username, task = "audio-classification") best_result, best_model_id = calculate_best_result(user_ac_models, task = "audio-classification") unit["best_result"] = best_result unit["best_model_id"] = best_model_id if unit["best_result"] >= unit["baseline_metric"]: unit["passed_"] = True unit["passed"] = pass_emoji(unit["passed_"]) except: print("Either no relevant models found, or no metrics in the model card for audio classificaiton") case "automatic-speech-recognition": try: user_asr_models = get_user_models(hf_username, task = "automatic-speech-recognition") best_result, best_model_id = calculate_best_result(user_asr_models, task = "automatic-speech-recognition") unit["best_result"] = best_result unit["best_model_id"] = best_model_id if unit["best_result"] <= unit["baseline_metric"]: unit["passed_"] = True unit["passed"] = pass_emoji(unit["passed_"]) except: print("Either no relevant models found, or no metrics in the model card for automatic speech recognition") case "text-to-speech": try: user_tts_models = get_user_models(hf_username, task = "text-to-speech") if user_tts_models: unit["best_result"] = 0 unit["best_model_id"] = user_tts_models[0] unit["passed_"] = True unit["passed"] = pass_emoji(unit["passed_"]) except: print("Either no relevant models found, or no metrics in the model card for automatic speech recognition") case "demo": u7_usernames = hf_hub_download(USERNAMES_DATASET_ID, repo_type = "dataset", filename="usernames.csv", token=HF_TOKEN) u7_users = pd.read_csv(u7_usernames) if hf_username in u7_users['username'].tolist(): unit["best_result"] = 0 unit["best_model_id"] = "Demo check passed, no model id" unit["passed_"] = True unit["passed"] = pass_emoji(unit["passed_"]) case _: print("Unknown task") print(results_certification) df = pd.DataFrame(results_certification) df = df[['passed', 'unit', 'task', 'baseline_metric', 'best_result', 'best_model_id']] return df with gr.Blocks() as demo: gr.Markdown(f""" # 🏆 Check your progress in the Audio Course 🏆 - To get a certificate of completion, you must **pass 3 out of 4 assignments before September 1st 2023**. - To get an honors certificate, you must **pass 4 out of 4 assignments before September 1st 2023**. For the assignments where you have to train a model, your model's metric should be equal to or better than the baseline metric. For the Unit 7 assignment, first, check your demo with the [Unit 7 assessment space](https://huggingface.co/spaces/huggingface-course/audio-course-u7-assessment) Make sure that you have uploaded your model(s) to Hub, and that your Unit 7 demo is public. To check your progress, type your Hugging Face Username here (in my case MariaK) """) hf_username = gr.Textbox(placeholder="MariaK", label="Your Hugging Face Username") check_progress_button = gr.Button(value="Check my progress") output = gr.components.Dataframe(value=certification(hf_username)) check_progress_button.click(fn=certification, inputs=hf_username, outputs=output) demo.launch()