Spaces:
Runtime error
Runtime error
import torch | |
import os | |
from peft import get_peft_model, LoraConfig, TaskType | |
from safetensors import safe_open | |
from peft import PeftModel | |
from tasks.eval.eval_utils import Conversation | |
from models.pllava import PllavaProcessor, PllavaForConditionalGeneration, PllavaConfig | |
from accelerate import init_empty_weights, dispatch_model, infer_auto_device_map,load_checkpoint_in_model | |
from accelerate.utils import get_balanced_memory | |
import spaces | |
from transformers import StoppingCriteria | |
class KeywordsStoppingCriteria(StoppingCriteria): | |
def __init__(self, keywords, tokenizer, input_ids): | |
self.keywords = keywords | |
self.tokenizer = tokenizer | |
self.start_len = None | |
self.input_ids = input_ids | |
def __call__( | |
self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs | |
) -> bool: | |
if self.start_len is None: | |
self.start_len = self.input_ids.shape[1] | |
return False | |
else: | |
outputs = self.tokenizer.batch_decode( | |
output_ids[:, self.start_len:], skip_special_tokens=True | |
) | |
flag = True | |
for output in outputs: | |
for keyword in self.keywords: | |
if keyword not in output: | |
flag = False | |
return False | |
return flag | |
def load_pllava(repo_id, num_frames, use_lora=False, weight_dir=None, lora_alpha=32, use_multi_gpus=False, pooling_shape=(16,12,12)): | |
kwargs = { | |
'num_frames': num_frames, | |
} | |
# print("===============>pooling_shape", pooling_shape) | |
if num_frames == 0: | |
kwargs.update(pooling_shape=(0,12,12)) # produce a bug if ever usen the pooling projector | |
config = PllavaConfig.from_pretrained( | |
repo_id if not use_lora else weight_dir, | |
pooling_shape=pooling_shape, | |
**kwargs, | |
) | |
with torch.no_grad(): | |
model = PllavaForConditionalGeneration.from_pretrained(repo_id, config=config, torch_dtype=torch.bfloat16) | |
try: | |
processor = PllavaProcessor.from_pretrained(repo_id) | |
except Exception as e: | |
processor = PllavaProcessor.from_pretrained('llava-hf/llava-1.5-7b-hf') | |
# config lora | |
if use_lora and weight_dir is not None: | |
print("Use lora") | |
peft_config = LoraConfig( | |
task_type=TaskType.CAUSAL_LM, inference_mode=False, target_modules=["q_proj", "v_proj"], | |
r=128, lora_alpha=lora_alpha, lora_dropout=0. | |
) | |
print("Lora Scaling:", lora_alpha/128) | |
model.language_model = get_peft_model(model.language_model, peft_config) | |
assert weight_dir is not None, "pass a folder to your lora weight" | |
print("Finish use lora") | |
# load weights | |
if weight_dir is not None: | |
state_dict = {} | |
save_fnames = os.listdir(weight_dir) | |
if "model.safetensors" in save_fnames: | |
use_full = False | |
for fn in save_fnames: | |
if fn.startswith('model-0'): | |
use_full=True | |
break | |
else: | |
use_full= True | |
if not use_full: | |
print("Loading weight from", weight_dir, "model.safetensors") | |
with safe_open(f"{weight_dir}/model.safetensors", framework="pt", device="cpu") as f: | |
for k in f.keys(): | |
state_dict[k] = f.get_tensor(k) | |
else: | |
print("Loading weight from", weight_dir) | |
for fn in save_fnames: | |
if fn.startswith('model-0'): | |
with safe_open(f"{weight_dir}/{fn}", framework="pt", device="cpu") as f: | |
for k in f.keys(): | |
state_dict[k] = f.get_tensor(k) | |
if 'model' in state_dict.keys(): | |
msg = model.load_state_dict(state_dict['model'], strict=False) | |
else: | |
msg = model.load_state_dict(state_dict, strict=False) | |
print(msg) | |
# dispatch model weight | |
if use_multi_gpus: | |
max_memory = get_balanced_memory( | |
model, | |
max_memory=None, | |
no_split_module_classes=["LlamaDecoderLayer"], | |
dtype='bfloat16', | |
low_zero=False, | |
) | |
device_map = infer_auto_device_map( | |
model, | |
max_memory=max_memory, | |
no_split_module_classes=["LlamaDecoderLayer"], | |
dtype='bfloat16' | |
) | |
dispatch_model(model, device_map=device_map) | |
print(model.hf_device_map) | |
model = model.eval() | |
return model, processor | |
def load_adapters(model, adapter_model_name_or_paths): | |
for adapter_model_name_or_path in adapter_model_name_or_paths: | |
if not isinstance(model, PeftModel): | |
model = PeftModel.from_pretrained(model, adapter_model_name_or_path, adapter_model_name_or_path) | |
else: | |
model.load_adapter(adapter_model_name_or_path, adapter_model_name_or_path) | |
return model | |
def pllava_answer(conv: Conversation, model, processor, img_list, do_sample=True, max_new_tokens=400, num_beams=1, min_length=1, top_p=0.9, | |
repetition_penalty=1.0, length_penalty=1, temperature=1.0, stop_criteria_keywords=None, print_res=False): | |
# torch.cuda.empty_cache() | |
prompt = conv.get_prompt() | |
inputs = processor(text=prompt, images=img_list, return_tensors="pt") | |
if inputs['pixel_values'] is None: | |
inputs.pop('pixel_values') | |
inputs = inputs.to(model.device) | |
# set up stopping criteria | |
if stop_criteria_keywords is not None: | |
stopping_criteria = [KeywordsStoppingCriteria(stop_criteria_keywords, processor.tokenizer, inputs["input_ids"])] | |
else: | |
stopping_criteria= None | |
with torch.no_grad(): | |
output_token = model.generate(**inputs, media_type='video', | |
do_sample=do_sample, max_new_tokens=max_new_tokens, num_beams=num_beams, min_length=min_length, | |
top_p=top_p, repetition_penalty=repetition_penalty, length_penalty=length_penalty, temperature=temperature, | |
stopping_criteria=stopping_criteria,) | |
output_text = processor.batch_decode(output_token, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
if print_res: # debug usage | |
print('### PROMPTING LM WITH: ', prompt) | |
print('### LM OUTPUT TEXT: ', output_text) | |
if conv.roles[-1] == "<|im_start|>assistant\n": | |
split_tag = "<|im_start|> assistant\n" | |
else: | |
split_tag = conv.roles[-1] | |
output_text = output_text.split(split_tag)[-1] | |
ending = conv.sep if isinstance(conv.sep, str) else conv.sep[1] | |
output_text = output_text.removesuffix(ending) | |
conv.messages[-1][1] = output_text | |
return output_text, conv | |