Spaces:
Runtime error
Runtime error
import copy | |
import itertools | |
import re | |
import os | |
import json | |
from enum import auto, Enum | |
import dataclasses | |
from typing import Any, List | |
from PIL import Image | |
import cv2 | |
import imageio | |
import numpy as np | |
import torch | |
from torch.utils.data import Dataset | |
import torchvision.transforms as T | |
from torchvision.transforms.functional import InterpolationMode | |
from moviepy.editor import VideoFileClip | |
from decord import VideoReader, cpu # This is Terrible, if you have this line of import in front of torch, will cause model.to(device) to hang | |
from transformers import StoppingCriteria, StoppingCriteriaList | |
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection | |
from utils.easydict import EasyDict | |
IMAGE_TOKEN = "<image>" | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
class SeparatorStyle(Enum): | |
"""Different separator style.""" | |
SINGLE = auto() | |
TWO = auto() | |
MPT = auto() | |
class MultiModalConvStyle(Enum): | |
"""Different separator style.""" | |
MM_ALONE = 'mm_alone' | |
MM_INTERLEAF = 'mm_inferleaf' | |
def dump_json(obj_serializable ,save_dir_path, json_file_name): | |
os.makedirs(save_dir_path, exist_ok=True) | |
save_path = os.path.join(save_dir_path, json_file_name) | |
with open(save_path, 'w', encoding='utf-8') as f: | |
json.dump(obj_serializable, f, indent=4, ensure_ascii=False, ) | |
def load_json(load_dir_path, json_file_name): | |
load_path = os.path.join(load_dir_path, json_file_name) | |
if not os.path.exists(load_path): | |
return None | |
with open(load_path, 'r', encoding='utf-8') as f: | |
obj_serializable = json.load(f) | |
return obj_serializable | |
class Conversation(EasyDict): | |
"""A class that keeps all conversation history.""" | |
system: str | |
roles: List[str] | |
messages: List[List[str]] | |
sep: List[str] | |
mm_token: str | |
mm_style: MultiModalConvStyle = MultiModalConvStyle.MM_INTERLEAF | |
pre_query_prompt: str=None | |
post_query_prompt: str=None | |
answer_prompt: str=None | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
if isinstance(self.sep, str): | |
self.sep = [self.sep for _ in self.roles] | |
def get_prompt(self): | |
sep = [self.sep for _ in self.roles] if isinstance(self.sep, str) else self.sep # if only one sep given, then both sep are the sames | |
sep = dict(zip(self.roles, sep)) | |
ret = self.system + sep[self.roles[0]] if self.system != "" else "" | |
for i, (role, message) in enumerate(self.messages): | |
# if is last msg(the prompt for assistant), if answer prompt exists, no sep added | |
if i+1 == len(self.messages): | |
if role != self.roles[-1]: # last role is not the model | |
ret += role + message + sep[role] + self.roles[-1] | |
else: | |
ret += role + message | |
else: | |
ret += role + message + sep[role] | |
return ret | |
# def get_prompt_multichoice(self): | |
# pass | |
def user_query(self, query=None, pre_query_prompt=None, post_query_prompt=None, is_mm=False, num_mm_token=1): | |
if post_query_prompt is not None: | |
query = f"{query} {post_query_prompt}" | |
if pre_query_prompt is not None: | |
query = f"{pre_query_prompt} {query}" | |
role = self.roles[0] | |
# TODO: remove the num_mm_token and hack the self.mm_token outside | |
if is_mm: | |
mm_str = num_mm_token*self.mm_token[:-1] + self.mm_token[-1] | |
if self.mm_style == MultiModalConvStyle.MM_ALONE: | |
self._append_message(role, mm_str) | |
elif self.mm_style == MultiModalConvStyle.MM_INTERLEAF: | |
if self.mm_token not in query: | |
query = f'{mm_str} {query}' | |
self._append_message(role, query) | |
def assistant_response(self, response, pre_query_prompt=None, post_query_prompt=None): | |
if post_query_prompt is not None: | |
response = f"{response} {post_query_prompt}" | |
if pre_query_prompt is not None: | |
response = f"{post_query_prompt} {response}" | |
role = self.roles[1] | |
self._append_message(role, response) | |
def _append_message(self, role, message): | |
message = '' if message is None else message | |
self.messages.append([role, message]) | |
def copy(self): | |
return copy.deepcopy(self) | |
conv_video_chatgpt_v1 = Conversation( | |
system="You are Video-ChatGPT, a large vision-language assistant. " | |
"You are able to understand the video content that the user provides, and assist the user with a variety of tasks using natural language." | |
"Follow the instructions carefully and explain your answers in detail based on the provided video.", | |
roles=("USER:", "ASSISTANT:"), | |
messages=[], | |
sep=[" ","</s>"], | |
mm_token='<image>', | |
mm_style=MultiModalConvStyle.MM_INTERLEAF, | |
) | |
conv_plain_v1 = Conversation( | |
system="", | |
roles=("USER:", "ASSISTANT:"), | |
messages=[], | |
sep=(" ", "</s>"), | |
mm_token='<image>' | |
) | |
# Attention to the roles[0] "USER: " has a space! | |
conv_eval_vcg = Conversation( | |
system="You are Video-ChatGPT, a large vision-language assistant. " | |
"You are able to understand the video content that the user provides, and assist the user with a variety of tasks using natural language." | |
"Follow the instructions carefully and explain your answers in detail based on the provided video.", | |
roles=("USER: ", "ASSISTANT:"), | |
messages=[], | |
sep=[" ","</s>"], | |
mm_token='<image>\n', | |
mm_style=MultiModalConvStyle.MM_ALONE, | |
) | |
conv_eval_vcg_llavanext = Conversation( | |
system="You are Video-ChatGPT, a large vision-language assistant. " | |
"You are able to understand the video content that the user provides, and assist the user with a variety of tasks using natural language." | |
"Follow the instructions carefully and explain your answers in detail based on the provided video.", | |
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"), | |
messages=[], | |
sep=["<|im_end|>\n","<|im_end|>\n"], | |
mm_token='<image>\n', | |
mm_style=MultiModalConvStyle.MM_ALONE, | |
) | |
SYSTEM_MVBENCH="Carefully watch the video and pay attention to the cause and sequence of events, the detail and movement of objects, and the action and pose of persons. Based on your observations, select the best option that accurately addresses the question.\n" | |
conv_eval_mvbench = Conversation( | |
system=SYSTEM_MVBENCH, | |
roles=("USER: ", "ASSISTANT:"), | |
messages=[], | |
sep=[" ","</s>"], | |
mm_token='<image>\n', | |
mm_style=MultiModalConvStyle.MM_ALONE, | |
) | |
conv_eval_mvbench_llavanext = Conversation( | |
system="You are Video-ChatGPT, a large vision-language assistant. " | |
"You are able to understand the video content that the user provides, and assist the user with a variety of tasks using natural language." | |
"Follow the instructions carefully and explain your answers in detail based on the provided video.", | |
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"), | |
messages=[], | |
sep=["<|im_end|>\n","<|im_end|>\n"], | |
mm_token='<image>\n', | |
mm_style=MultiModalConvStyle.MM_ALONE, | |
) | |
conv_eval_videoqabench = Conversation( | |
system="", | |
roles=("USER: ", "ASSISTANT:"), | |
messages=[], | |
sep=[" ","</s>"], | |
mm_token='<image>\n', | |
mm_style=MultiModalConvStyle.MM_INTERLEAF, | |
pre_query_prompt="The input consists of a sequence of key frames from a video. Answer the question concisely first and followed by significant events, characters, or objects that appear throughout the frames. Question:", | |
post_query_prompt="\n", | |
answer_prompt='\nAnswer: In the video,' | |
) | |
conv_eval_videoqa_llavanext = Conversation( | |
system="<|im_start|>system\nAnswer the question.", | |
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"), | |
messages=[], | |
sep=["<|im_end|>\n","<|im_end|>\n"], | |
mm_token='<image>\n', | |
mm_style=MultiModalConvStyle.MM_INTERLEAF, | |
pre_query_prompt="The input consists of a sequence of key frames from a video. Answer the question concisely first and followed by significant events, characters, or objects that appear throughout the frames. Question:", | |
post_query_prompt="\n", | |
answer_prompt='\nAnswer: In the video,' | |
) | |
SYSTEM_RECAPTION="""You are a powerful Video Magic ChatBot, a large vision-language assistant. | |
You are able to understand the video content that the user provides and assist the user in a video recaptioning task. | |
The user will provide you with the video and maybe some extra noisy information to help you out. Make use of the information in a proper way to be competent for the recaption job | |
### INSTRUCTIONS: | |
1. Follow the user's instruction. | |
2. Be critical yet believe in yourself. | |
""" | |
conv_eval_recaption = Conversation( | |
system=SYSTEM_RECAPTION, | |
roles=("USER: ", "ASSISTANT:"), | |
messages=[], | |
sep=[" ","</s>"], | |
mm_token='<image>\n', | |
mm_style=MultiModalConvStyle.MM_ALONE, | |
) | |
conv_eval_recaption_llavanext = Conversation( | |
system=SYSTEM_RECAPTION, | |
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"), | |
messages=[], | |
sep=["<|im_end|>\n","<|im_end|>\n"], | |
mm_token='<image>\n', | |
mm_style=MultiModalConvStyle.MM_ALONE, | |
) | |
conv_templates = { | |
"plain": conv_plain_v1, | |
"eval_vcgbench": conv_eval_vcg, | |
"eval_vcg_llavanext": conv_eval_vcg_llavanext, | |
"eval_mvbench": conv_eval_mvbench, | |
"eval_mvbench_llavanext": conv_eval_mvbench_llavanext, | |
"eval_videoqabench": conv_eval_videoqabench, | |
"eval_videoqa_llavanext": conv_eval_videoqa_llavanext, | |
"eval_recaption": conv_eval_recaption, | |
"eval_recaption_llavanext": conv_eval_recaption_llavanext, | |
} | |
class EvalDataset(Dataset): | |
def __init__(self, num_segments, test_ratio=None): | |
super().__init__() | |
self.num_segments = num_segments | |
self.test_ratio = test_ratio | |
self.decord_method = { | |
'video': self.read_video, | |
'gif': self.read_clip_gif, | |
'frame': self.read_frame, | |
} | |
def __getitem__(self, index) -> Any: | |
raise NotImplementedError('') | |
def __str__(self): | |
len_list = {} | |
option_list = {} | |
for data in self.data_list: | |
if data['task_type'] not in len_list: | |
len_list[data['task_type']] = 0 | |
len_list[data['task_type']] += 1 | |
if data['task_type'] not in option_list: | |
option_list[data['task_type']] = 0 | |
option_list[data['task_type']] += len(data['data']['candidates']) | |
correct = 0 | |
total = 0 | |
res = f"There are {len(self.data_list)} videos as follow:\n" | |
for k, v in len_list.items(): | |
correct += len_list[k] | |
total += option_list[k] | |
res += f"{v} for {k} ({option_list[k]} options => {len_list[k]/option_list[k]*100:.2f}%)\n" | |
correct = correct + 1 / option_list[k] | |
res += f"Total random accuracy: {correct/total*100:.2f}%" | |
return res.rstrip() | |
def __len__(self): | |
return len(self.data_list) | |
def get_index(self, bound, fps, max_frame, first_idx=0): | |
if bound: | |
start, end = bound[0], bound[1] | |
else: | |
start, end = -100000, 100000 | |
start_idx = max(first_idx, round(start * fps)) | |
end_idx = min(round(end * fps), max_frame) | |
seg_size = float(end_idx - start_idx) / self.num_segments | |
frame_indices = np.array([ | |
int(start_idx + (seg_size / 2) + np.round(seg_size * idx)) | |
for idx in range(self.num_segments) | |
]) | |
return frame_indices | |
def read_video(self, video_path, bound=None): | |
vr = VideoReader(video_path, ctx=cpu(0), num_threads=4) | |
max_frame = len(vr) - 1 | |
fps = float(vr.get_avg_fps()) | |
images_group = list() | |
frame_indices = self.get_index(bound, fps, max_frame, first_idx=0) | |
for frame_index in frame_indices: | |
img = Image.fromarray(vr[frame_index].asnumpy()) | |
images_group.append(img) | |
return images_group | |
def read_gif(self, video_path, bound=None, fps=25): | |
gif = imageio.get_reader(video_path) | |
max_frame = len(gif) - 1 | |
images_group = list() | |
frame_indices = self.get_index(bound, fps, max_frame, first_idx=0) | |
for index, frame in enumerate(gif): | |
if index in frame_indices: | |
img = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB) | |
img = Image.fromarray(img) | |
images_group.append(img) | |
if len(images_group) == len(frame_indices): | |
break | |
# might be some really short videos in the gif datasets | |
if len(images_group) < self.num_segments: | |
multiplier = int(self.num_segments/len(images_group)) + 1 | |
images_group = [image for _ in range(multiplier) for image in images_group][:self.num_segments] | |
assert len(images_group) == self.num_segments | |
return images_group | |
def read_clip_gif(self, video_path, bound=None, fps=25): | |
gif = VideoFileClip(video_path) | |
frames = gif.iter_frames() | |
max_frame = gif.reader.nframes - 1 | |
images_group = list() | |
frame_indices = self.get_index(bound, fps, max_frame, first_idx=0) | |
for index, frame in enumerate(frames): | |
if index in frame_indices: | |
img = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB) | |
img = Image.fromarray(img) | |
images_group.append(img) | |
# might be some really short videos in the gif datasets | |
if len(images_group) < self.num_segments: | |
multiplier = int(self.num_segments/len(images_group)) + 1 | |
images_group = [image for _ in range(multiplier) for image in images_group][:self.num_segments] | |
assert len(images_group) == self.num_segments | |
return images_group | |
def read_frame(self, video_path, bound=None, fps=3): | |
max_frame = len(os.listdir(video_path)) | |
images_group = list() | |
frame_indices = self.get_index(bound, fps, max_frame, first_idx=1) # frame_idx starts from 1 | |
for frame_index in frame_indices: | |
img = Image.open(os.path.join(video_path, f"{frame_index:05d}.jpg")) | |
images_group.append(img) | |
return images_group | |
def set_rank_and_world_size(self, rank, world_size): | |
self.rank = rank | |
self.world_size = world_size | |
# self.data_list = self.data_list[::200] # debug | |
if self.test_ratio is None: | |
self.data_list = self.data_list[rank::world_size] | |
else: | |
np.random.RandomState(42).shuffle(self.data_list) | |
if isinstance(self.test_ratio, float): | |
num_samples = int(len(self.data_list) * self.test_ratio) | |
else: | |
num_samples = int(self.test_ratio) | |
self.data_list = self.data_list[rank:num_samples:world_size] | |
class ChatPllava: | |
print_res=True | |
do_sample=False | |
def __init__(self, model, processor): | |
self.model = model | |
self.processor = processor | |
def ask(self, text, conv: Conversation, system): | |
conv.system = system | |
conv.user_query(text, ) | |
return conv | |
def answer(self, conv: Conversation, img_list, max_new_tokens=200, num_beams=1, min_length=1, top_p=0.9, | |
repetition_penalty=1.0, length_penalty=1, temperature=1.0): | |
torch.cuda.empty_cache() | |
prompt = conv.get_prompt() | |
if prompt.count(conv.mm_token) < len(img_list): | |
diff_mm_num = len(img_list) - prompt.count(conv.mm_token) | |
for i in range(diff_mm_num): | |
conv.user_query("", is_mm=True) | |
prompt = conv.get_prompt() | |
inputs = self.processor(text=prompt, images=img_list, return_tensors="pt") | |
if inputs['pixel_values'] is None: | |
inputs.pop('pixel_values') | |
inputs = inputs.to(self.model.device) | |
with torch.no_grad(): | |
output_token = self.model.generate(**inputs, media_type='video', | |
do_sample=self.do_sample,max_new_tokens=max_new_tokens, num_beams=num_beams, min_length=min_length, | |
top_p=top_p, repetition_penalty=repetition_penalty, length_penalty=length_penalty, temperature=temperature, | |
) # dont need to long for the choice. | |
output_text = self.processor.batch_decode(output_token, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
if self.print_res: | |
print('###PROMPT: ', prompt) | |
print('###LM OUTPUT TEXT', output_text) | |
# <|im_start|> encode and then decode would extend a space at folloing, this is insane... | |
if conv.roles[-1] == "<|im_start|>assistant\n": | |
split_tag = "<|im_start|> assistant\n" | |
else: | |
split_tag = conv.roles[-1] | |
output_text = output_text.split(split_tag)[-1].rstrip(conv.sep[1]) | |
conv.assistant_response(output_text) | |
return output_text, output_token.cpu().numpy(), conv | |
def get_index(self, num_frames, num_segments): | |
seg_size = float(num_frames - 1) / num_segments | |
start = int(seg_size / 2) | |
offsets = np.array([ | |
start + int(np.round(seg_size * idx)) for idx in range(num_segments) | |
]) | |
return offsets | |
def load_video(self, video_path, num_segments=8, return_msg=False): | |
vr = VideoReader(video_path, ctx=cpu(0)) | |
num_frames = len(vr) | |
frame_indices = self.get_index(num_frames, num_segments) | |
duration = len(vr) // vr.get_avg_fps() | |
index = np.linspace(0, len(vr)-1, num=int(duration)) | |
buffer = vr.get_batch(index).asnumpy() | |
# transform | |
images_group = list() | |
for frame in buffer: | |
img = Image.fromarray(frame) | |
images_group.append(img) | |
images_group = list() | |
for frame_index in frame_indices: | |
img = Image.fromarray(vr[frame_index].asnumpy()) | |
images_group.append(img) | |
if return_msg: | |
fps = float(vr.get_avg_fps()) | |
sec = ", ".join([str(round(f / fps, 1)) for f in frame_indices]) | |
# " " should be added in the start and end | |
msg = f"The video contains {len(frame_indices)} frames sampled at {sec} seconds." | |
return images_group, msg | |
else: | |
return images_group | |
def upload_video(self, image, conv: Conversation, img_list: list[list], num_segments=None): | |
num_segments = self.model.config.num_frames if num_segments is None else num_segments | |
if isinstance(image, str): # is a image path | |
vid, msg = self.load_video(image, num_segments=num_segments, return_msg=True) | |
else: | |
raise NotImplementedError | |
print("Input video shape:", len(vid), *vid[0].size) | |
img_list.append(vid) | |
conv.user_query("", is_mm=True) | |
msg = "Received." | |
# self.conv.append_message(self.conv.roles[1], msg) | |
return msg, img_list, conv | |
def upload_img(self, image, conv, img_list): | |
assert False | |
img = image#Image.open(image)#.convert('RGB') | |
transform = T.Compose( | |
[ | |
T.Resize( | |
(224, 224), interpolation=InterpolationMode.BICUBIC | |
), | |
T.ToTensor(), | |
T.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), | |
] | |
) | |
img = transform(img).unsqueeze(0).unsqueeze(0).cuda() | |
image_emb, _ = self.model.encode_img(img, "Observe the image and answer the question.") | |
img_list.append(image_emb) | |
conv.messages.append([ | |
conv.roles[0], | |
f"<Image><ImageHere></Image>\n" | |
]) | |
msg = "Received." | |
# self.conv.append_message(self.conv.roles[1], msg) | |
return msg,img_list, conv | |
class StoppingCriteriaSub(StoppingCriteria): | |
def __init__(self, stops=[], encounters=1): | |
super().__init__() | |
self.stops = stops | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor): | |
for stop in self.stops: | |
if torch.all((stop == input_ids[0][-len(stop):])).item(): | |
return True | |
return False | |