Spaces:
Runtime error
Runtime error
import warnings | |
warnings.filterwarnings("ignore") | |
import gradio as gr | |
import re | |
from typing import Dict, List | |
import os | |
import gc | |
import torch | |
import pandas as pd | |
from src.video_model import describe_video | |
from src.utils import parse_string, parse_annotations | |
# Function to save data to a CSV file using pandas | |
def save_to_csv(observations: List[Dict], output_dir: str = "outputs") -> str: | |
if not os.path.exists(output_dir): | |
os.makedirs(output_dir) | |
# Convert the list of dictionaries to a pandas DataFrame | |
df = pd.DataFrame(observations) | |
# Specify the CSV file path | |
csv_file = os.path.join(output_dir, "video_observations.csv") | |
# Save the DataFrame to a CSV file | |
df.to_csv(csv_file, index=False) | |
return csv_file | |
# Function to process a single video and return the observation data | |
def process_single_video(video_path, standing, hands, location, screen) -> Dict: | |
video_name = os.path.basename(video_path) # Extract video name from the path | |
query = "Describe this video in detail and answer the questions" | |
additional_info = [] | |
if standing: | |
additional_info.append("Is the subject in the video standing or sitting?\n") | |
if hands: | |
additional_info.append("Is the subject holding any object in their hands?\n") | |
if location: | |
additional_info.append("Is the subject present indoors?\n") | |
if screen: | |
additional_info.append("Is the subject interacting with a screen in the background by facing the screen?\n") | |
end_query = """Provide the results in <annotation> tags, where 0 indicates False, 1 indicates True, and None indicates that no information is present. Follow the below examples: | |
<annotation>indoors: 0</annotation> | |
<annotation>standing: 1</annotation> | |
<annotation>hands.free: 0</annotation> | |
<annotation>screen.interaction_yes: 0</annotation> | |
""" | |
final_query = query + " " + " ".join(additional_info) | |
final_prompt = final_query + " " + end_query | |
# Assuming your describe_video function handles the video processing | |
response = describe_video(video_path, final_prompt) | |
final_response = f"<video_name>{video_name}</video_name>" + " \n" + response | |
# conditions = { | |
# 'standing': (standing, 'standing: 1', 'standing: None'), | |
# 'hands': (hands, 'hands.free: 1', 'hands.free: None'), | |
# 'location': (location, 'indoors: 1', 'indoors: None'), | |
# 'screen': (screen, 'screen.interaction_yes: 1', 'screen.interaction_yes: None') | |
# } | |
# for key, (condition, to_replace, replacement) in conditions.items(): | |
# if not condition: | |
# final_response = final_response.replace(to_replace, replacement) | |
# Parse the response to extract video name and annotations | |
parsed_content = parse_string(final_response, ["video_name", "annotation"]) | |
video_name = parsed_content['video_name'][0] if parsed_content['video_name'] else None | |
annotations_dict = parse_annotations(parsed_content['annotation']) if parsed_content['annotation'] else {} | |
# Return the observation as a dictionary | |
return {'video_name': video_name, **annotations_dict} | |
# Function to process all videos in a folder | |
def process_multiple_videos(video_files: List[str], standing, hands, location, screen): | |
all_observations = [] | |
for video_path in video_files: | |
observation = process_single_video(video_path, standing, hands, location, screen) | |
if observation['video_name']: # Only add valid observations | |
all_observations.append(observation) | |
else: | |
print("Error processing video:", video_path) # Log any errors | |
# Clear GPU cache | |
torch.cuda.empty_cache() | |
gc.collect() | |
# Save all observations to a CSV file and return the file path | |
csv_file = save_to_csv(all_observations) | |
return "Processing completed. Download the CSV file.", csv_file | |
# Gradio interface | |
def gradio_interface(video_files, standing, hands, location, screen): | |
video_file_paths = [video.name for video in video_files] # Extract file paths from uploaded files | |
return process_multiple_videos(video_file_paths, standing, hands, location, screen) | |
# Inputs | |
video_files = gr.File(file_count="multiple", file_types=["video"], label="Upload multiple videos") | |
standing = gr.Checkbox(label="Standing") | |
hands = gr.Checkbox(label="Hands Free") | |
location = gr.Checkbox(label="Indoors") | |
screen = gr.Checkbox(label="Screen Interaction") | |
# Outputs | |
response = gr.Textbox(label="Status") | |
download_link = gr.File(label="Download CSV") | |
# Gradio interface setup | |
interface = gr.Interface( | |
fn=gradio_interface, | |
inputs=[video_files, standing, hands, location, screen], | |
outputs=[response, download_link], | |
title="GSoC Super Rapid Annotator - Batch Video Annotation", | |
description="Upload multiple videos and process them sequentially, saving the results to a downloadable CSV file.", | |
theme=gr.themes.Soft(primary_hue="red", secondary_hue="red"), | |
allow_flagging="never" | |
) | |
# Launch interface | |
interface.launch(debug=False) | |