ManishThota commited on
Commit
002ed37
1 Parent(s): 181fc4a

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +61 -0
app.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ import argparse
3
+ import torch
4
+ import re
5
+ import gradio as gr
6
+ from threading import Thread
7
+ from transformers import TextIteratorStreamer, AutoTokenizer, AutoModelForCausalLM
8
+
9
+ parser = argparse.ArgumentParser()
10
+
11
+ if torch.cuda.is_available():
12
+ device, dtype = "cuda", torch.float16
13
+ else:
14
+ device, dtype = "cpu", torch.float32
15
+
16
+ model_id = "vikhyatk/moondream2"
17
+ tokenizer = AutoTokenizer.from_pretrained(model_id, revision="2024-03-06")
18
+ moondream = AutoModelForCausalLM.from_pretrained(
19
+ model_id, trust_remote_code=True, revision="2024-03-06"
20
+ ).to(device=device, dtype=dtype)
21
+ moondream.eval()
22
+
23
+
24
+ @spaces.GPU(duration=10)
25
+ def answer_question(img, prompt):
26
+ image_embeds = moondream.encode_image(img)
27
+ streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
28
+ thread = Thread(
29
+ target=moondream.answer_question,
30
+ kwargs={
31
+ "image_embeds": image_embeds,
32
+ "question": prompt,
33
+ "tokenizer": tokenizer,
34
+ "streamer": streamer,
35
+ },
36
+ )
37
+ thread.start()
38
+
39
+ buffer = ""
40
+ for new_text in streamer:
41
+ clean_text = re.sub("<$|<END$", "", new_text)
42
+ buffer += clean_text
43
+ yield buffer
44
+
45
+
46
+ with gr.Blocks() as demo:
47
+ gr.Markdown(
48
+ """
49
+ # Super Rapid Annotator - Multimodal vision tool to annotate videos with LLaVA framework
50
+ """
51
+ )
52
+ with gr.Row():
53
+ prompt = gr.Textbox(label="Input", placeholder="Type here...", scale=4)
54
+ submit = gr.Button("Submit")
55
+ with gr.Row():
56
+ img = gr.Image(type="pil", label="Upload an Image")
57
+ output = gr.TextArea(label="Response")
58
+ submit.click(answer_question, [img, prompt], output)
59
+ prompt.submit(answer_question, [img, prompt], output)
60
+
61
+ demo.queue().launch()