Spaces:
Running
Running
import os | |
from PyPDF2 import PdfReader | |
import pandas as pd | |
from dotenv import load_dotenv | |
import json | |
from datetime import datetime | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.cluster import KMeans | |
import random | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
class TweetDatasetProcessor: | |
def __init__(self, fine_tuned_model_name): | |
load_dotenv() | |
self.tweets = [] | |
self.personality_profile = {} | |
self.vectorizer = TfidfVectorizer(stop_words='english') | |
self.used_tweets = set() # Track used tweets to avoid repetition | |
# Load fine-tuned model and tokenizer | |
self.model = AutoModelForCausalLM.from_pretrained(fine_tuned_model_name) | |
self.tokenizer = AutoTokenizer.from_pretrained(fine_tuned_model_name) | |
def _process_line(line): | |
"""Process a single line.""" | |
line = line.strip() | |
if not line or line.startswith('http'): # Skip empty lines and URLs | |
return None | |
return { | |
'content': line, | |
'timestamp': datetime.now(), | |
'mentions': [word for word in line.split() if word.startswith('@')], | |
'hashtags': [word for word in line.split() if word.startswith('#')] | |
} | |
def extract_text_from_pdf(self, pdf_path): | |
"""Extract text content from PDF file.""" | |
reader = PdfReader(pdf_path) | |
text = "" | |
for page in reader.pages: | |
text += page.extract_text() | |
return text | |
def process_pdf_content(self, text): | |
"""Process PDF content and clean extracted tweets.""" | |
if not text.strip(): | |
raise ValueError("The uploaded PDF appears to be empty.") | |
lines = text.split('\n') | |
clean_tweets = [TweetDatasetProcessor._process_line(line) for line in lines] | |
self.tweets = [tweet for tweet in clean_tweets if tweet] | |
if not self.tweets: | |
raise ValueError("No tweets were extracted from the PDF. Ensure the content is properly formatted.") | |
# Save the processed tweets to a CSV | |
df = pd.DataFrame(self.tweets) | |
df.to_csv('processed_tweets.csv', index=False) | |
return df | |
def categorize_tweets(self): | |
"""Cluster tweets into categories using KMeans.""" | |
all_tweets = [tweet['content'] for tweet in self.tweets] | |
if not all_tweets: | |
raise ValueError("No tweets available for clustering.") | |
tfidf_matrix = self.vectorizer.fit_transform(all_tweets) | |
kmeans = KMeans(n_clusters=5, random_state=1) | |
kmeans.fit(tfidf_matrix) | |
for i, tweet in enumerate(self.tweets): | |
tweet['category'] = f"Category {kmeans.labels_[i]}" | |
return pd.DataFrame(self.tweets) | |
def analyze_personality(self, max_tweets=50): | |
"""Comprehensive personality analysis using a limited subset of tweets.""" | |
if not self.tweets: | |
raise ValueError("No tweets available for personality analysis.") | |
all_tweets = [tweet['content'] for tweet in self.tweets][:max_tweets] | |
analysis_prompt = f"""Perform a deep psychological analysis of the author based on these tweets: | |
Core beliefs, emotional tendencies, cognitive patterns, etc. | |
Tweets for analysis: | |
{json.dumps(all_tweets, indent=2)} | |
""" | |
input_ids = self.tokenizer.encode(analysis_prompt, return_tensors='pt') | |
output = self.model.generate(input_ids, max_length=500, num_return_sequences=1, temperature=0.7) | |
personality_analysis = self.tokenizer.decode(output[0], skip_special_tokens=True) | |
self.personality_profile = personality_analysis | |
return self.personality_profile | |
def generate_tweet(self, context="", sample_size=3): | |
"""Generate a new tweet by sampling random tweets and avoiding repetition.""" | |
if not self.tweets: | |
return "Error: No tweets available for generation." | |
# Randomly sample unique tweets | |
available_tweets = [tweet for tweet in self.tweets if tweet['content'] not in self.used_tweets] | |
if len(available_tweets) < sample_size: | |
self.used_tweets.clear() # Reset used tweets if all have been used | |
available_tweets = self.tweets | |
sampled_tweets = random.sample(available_tweets, sample_size) | |
sampled_contents = [tweet['content'] for tweet in sampled_tweets] | |
# Update the used tweets tracker | |
self.used_tweets.update(sampled_contents) | |
# Truncate personality profile to avoid token overflow | |
personality_profile_excerpt = self.personality_profile[:400] if len(self.personality_profile) > 400 else self.personality_profile | |
# Construct the prompt | |
prompt = f"""Based on this personality profile: | |
{personality_profile_excerpt} | |
Current context or topic (if any): | |
{context} | |
Tweets for context: | |
{', '.join(sampled_contents)} | |
**Only generate the tweet. Do not include analysis, explanation, or any other content.** | |
""" | |
input_ids = self.tokenizer.encode(prompt, return_tensors='pt') | |
output = self.model.generate(input_ids, max_length=150, num_return_sequences=1, temperature=1.0) | |
generated_tweet = self.tokenizer.decode(output[0], skip_special_tokens=True).strip() | |
return generated_tweet | |