import os from PyPDF2 import PdfReader import pandas as pd from dotenv import load_dotenv import json from datetime import datetime from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.cluster import KMeans import random from transformers import AutoModelForCausalLM, AutoTokenizer import torch class TweetDatasetProcessor: def __init__(self, fine_tuned_model_name): load_dotenv() self.tweets = [] self.personality_profile = {} self.vectorizer = TfidfVectorizer(stop_words='english') self.used_tweets = set() # Track used tweets to avoid repetition # Load fine-tuned model and tokenizer self.model = AutoModelForCausalLM.from_pretrained(fine_tuned_model_name) self.tokenizer = AutoTokenizer.from_pretrained(fine_tuned_model_name) @staticmethod def _process_line(line): """Process a single line.""" line = line.strip() if not line or line.startswith('http'): # Skip empty lines and URLs return None return { 'content': line, 'timestamp': datetime.now(), 'mentions': [word for word in line.split() if word.startswith('@')], 'hashtags': [word for word in line.split() if word.startswith('#')] } def extract_text_from_pdf(self, pdf_path): """Extract text content from PDF file.""" reader = PdfReader(pdf_path) text = "" for page in reader.pages: text += page.extract_text() return text def process_pdf_content(self, text): """Process PDF content and clean extracted tweets.""" if not text.strip(): raise ValueError("The uploaded PDF appears to be empty.") lines = text.split('\n') clean_tweets = [TweetDatasetProcessor._process_line(line) for line in lines] self.tweets = [tweet for tweet in clean_tweets if tweet] if not self.tweets: raise ValueError("No tweets were extracted from the PDF. Ensure the content is properly formatted.") # Save the processed tweets to a CSV df = pd.DataFrame(self.tweets) df.to_csv('processed_tweets.csv', index=False) return df def categorize_tweets(self): """Cluster tweets into categories using KMeans.""" all_tweets = [tweet['content'] for tweet in self.tweets] if not all_tweets: raise ValueError("No tweets available for clustering.") tfidf_matrix = self.vectorizer.fit_transform(all_tweets) kmeans = KMeans(n_clusters=5, random_state=1) kmeans.fit(tfidf_matrix) for i, tweet in enumerate(self.tweets): tweet['category'] = f"Category {kmeans.labels_[i]}" return pd.DataFrame(self.tweets) def analyze_personality(self, max_tweets=50): """Comprehensive personality analysis using a limited subset of tweets.""" if not self.tweets: raise ValueError("No tweets available for personality analysis.") all_tweets = [tweet['content'] for tweet in self.tweets][:max_tweets] analysis_prompt = f"""Perform a deep psychological analysis of the author based on these tweets: Core beliefs, emotional tendencies, cognitive patterns, etc. Tweets for analysis: {json.dumps(all_tweets, indent=2)} """ input_ids = self.tokenizer.encode(analysis_prompt, return_tensors='pt') output = self.model.generate(input_ids, max_length=500, num_return_sequences=1, temperature=0.7) personality_analysis = self.tokenizer.decode(output[0], skip_special_tokens=True) self.personality_profile = personality_analysis return self.personality_profile def generate_tweet(self, context="", sample_size=3): """Generate a new tweet by sampling random tweets and avoiding repetition.""" if not self.tweets: return "Error: No tweets available for generation." # Randomly sample unique tweets available_tweets = [tweet for tweet in self.tweets if tweet['content'] not in self.used_tweets] if len(available_tweets) < sample_size: self.used_tweets.clear() # Reset used tweets if all have been used available_tweets = self.tweets sampled_tweets = random.sample(available_tweets, sample_size) sampled_contents = [tweet['content'] for tweet in sampled_tweets] # Update the used tweets tracker self.used_tweets.update(sampled_contents) # Truncate personality profile to avoid token overflow personality_profile_excerpt = self.personality_profile[:400] if len(self.personality_profile) > 400 else self.personality_profile # Construct the prompt prompt = f"""Based on this personality profile: {personality_profile_excerpt} Current context or topic (if any): {context} Tweets for context: {', '.join(sampled_contents)} **Only generate the tweet. Do not include analysis, explanation, or any other content.** """ input_ids = self.tokenizer.encode(prompt, return_tensors='pt') output = self.model.generate(input_ids, max_length=150, num_return_sequences=1, temperature=1.0) generated_tweet = self.tokenizer.decode(output[0], skip_special_tokens=True).strip() return generated_tweet