tweets_clone / app.py
Manasa1's picture
Update app.py
361637f verified
raw
history blame
18.1 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import random
from datetime import datetime
from PyPDF2 import PdfReader
import json
from dotenv import load_dotenv
load_dotenv()
class TweetDatasetProcessor:
def __init__(self, fine_tuned_model_name, pdf_path=None):
self.tweets = []
self.personality_profile = {}
self.used_tweets = set() # Track used tweets to avoid repetition
self.pdf_path = pdf_path
# Load fine-tuned model and tokenizer
self.model = AutoModelForCausalLM.from_pretrained(fine_tuned_model_name)
self.tokenizer = AutoTokenizer.from_pretrained(fine_tuned_model_name)
@staticmethod
def _process_line(line):
"""Process a single line."""
line = line.strip()
if not line or line.startswith('http'): # Skip empty lines and URLs
return None
return {
'content': line,
'timestamp': datetime.now(),
'mentions': [word for word in line.split() if word.startswith('@')],
'hashtags': [word for word in line.split() if word.startswith('#')]
}
def extract_text_from_pdf(self):
"""Extract text content from PDF file."""
if not self.pdf_path:
return ""
reader = PdfReader(self.pdf_path)
text = ""
for page in reader.pages:
text += page.extract_text()
return text
def process_pdf_content(self, text):
"""Process PDF content and clean extracted tweets."""
if not text.strip():
raise ValueError("The provided PDF appears to be empty.")
lines = text.split('\n')
clean_tweets = [TweetDatasetProcessor._process_line(line) for line in lines]
self.tweets = [tweet for tweet in clean_tweets if tweet]
if not self.tweets:
raise ValueError("No tweets were extracted from the PDF. Ensure the content is properly formatted.")
return self.tweets
def analyze_personality(self, max_tweets=50):
"""Comprehensive personality analysis using a limited subset of tweets."""
if not self.tweets:
raise ValueError("No tweets available for personality analysis.")
all_tweets = [tweet['content'] for tweet in self.tweets][:max_tweets]
analysis_prompt = f"""Perform a deep psychological analysis of the author based on these tweets:
Core beliefs, emotional tendencies, cognitive patterns, etc.
Tweets for analysis:
{json.dumps(all_tweets, indent=2)}
"""
input_ids = self.tokenizer.encode(analysis_prompt, return_tensors='pt')
output = self.model.generate(input_ids, max_length=500, num_return_sequences=1, temperature=0.7)
personality_analysis = self.tokenizer.decode(output[0], skip_special_tokens=True)
self.personality_profile = personality_analysis
return self.personality_profile
def generate_tweet(self, context="", sample_size=3):
"""Generate a new tweet by sampling random tweets and avoiding repetition."""
if not self.tweets:
return "Error: No tweets available for generation."
# Randomly sample unique tweets
available_tweets = [tweet for tweet in self.tweets if tweet['content'] not in self.used_tweets]
if len(available_tweets) < sample_size:
self.used_tweets.clear() # Reset used tweets if all have been used
available_tweets = self.tweets
sampled_tweets = random.sample(available_tweets, sample_size)
sampled_contents = [tweet['content'] for tweet in sampled_tweets]
# Update the used tweets tracker
self.used_tweets.update(sampled_contents)
# Truncate personality profile to avoid token overflow
personality_profile_excerpt = self.personality_profile[:400] if len(self.personality_profile) > 400 else self.personality_profile
# Construct the prompt
prompt = f"""Based on this personality profile:
{personality_profile_excerpt}
Current context or topic (if any):
{context}
Tweets for context:
{', '.join(sampled_contents)}
**Only generate the tweet. Do not include analysis, explanation, or any other content.**
"""
input_ids = self.tokenizer.encode(prompt, return_tensors='pt')
output = self.model.generate(input_ids, max_length=150, num_return_sequences=1, temperature=1.0)
generated_tweet = self.tokenizer.decode(output[0], skip_special_tokens=True).strip()
return generated_tweet
# Gradio Interface Function
def gradio_interface(pdf_file, context="AI-powered tweet generation"):
# Initialize the processor with uploaded PDF path
fine_tuned_model_name = 'Manasa1/GPT2_Finetuned_tweets' # Replace with the path to your fine-tuned model
processor = TweetDatasetProcessor(fine_tuned_model_name, pdf_path=pdf_file.name)
# Extract text from PDF and process it
text = processor.extract_text_from_pdf()
tweets = processor.process_pdf_content(text)
# Analyze personality based on tweets
personality_analysis = processor.analyze_personality(max_tweets=50)
# Generate tweet based on the personality analysis and context
generated_tweet = processor.generate_tweet(context=context, sample_size=3)
return personality_analysis, generated_tweet
# Gradio app setup
iface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.File(label="Upload PDF with Tweets"),
gr.Textbox(label="Context for Tweet Generation (optional)", placeholder="e.g., AI-powered tweet generation")
],
outputs=[
gr.Textbox(label="Personality Analysis"),
gr.Textbox(label="Generated Tweet")
],
live=True,
title="AI Personality and Tweet Generation",
description="Automatically analyze personality and generate tweets based on a provided PDF of tweets."
)
# Launch the app
if __name__ == "__main__":
iface.launch()
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import random
from datetime import datetime
from PyPDF2 import PdfReader
import json
from dotenv import load_dotenv
load_dotenv()
class TweetDatasetProcessor:
def __init__(self, fine_tuned_model_name, pdf_path=None):
self.tweets = []
self.personality_profile = {}
self.used_tweets = set() # Track used tweets to avoid repetition
self.pdf_path = pdf_path
# Load fine-tuned model and tokenizer
self.model = AutoModelForCausalLM.from_pretrained(fine_tuned_model_name)
self.tokenizer = AutoTokenizer.from_pretrained(fine_tuned_model_name)
@staticmethod
def _process_line(line):
"""Process a single line."""
line = line.strip()
if not line or line.startswith('http'): # Skip empty lines and URLs
return None
return {
'content': line,
'timestamp': datetime.now(),
'mentions': [word for word in line.split() if word.startswith('@')],
'hashtags': [word for word in line.split() if word.startswith('#')]
}
def extract_text_from_pdf(self):
"""Extract text content from PDF file."""
if not self.pdf_path:
return ""
reader = PdfReader(self.pdf_path)
text = ""
for page in reader.pages:
text += page.extract_text()
return text
def process_pdf_content(self, text):
"""Process PDF content and clean extracted tweets."""
if not text.strip():
raise ValueError("The provided PDF appears to be empty.")
lines = text.split('\n')
clean_tweets = [TweetDatasetProcessor._process_line(line) for line in lines]
self.tweets = [tweet for tweet in clean_tweets if tweet]
if not self.tweets:
raise ValueError("No tweets were extracted from the PDF. Ensure the content is properly formatted.")
return self.tweets
def analyze_personality(self, max_tweets=50):
"""Comprehensive personality analysis using a limited subset of tweets."""
if not self.tweets:
raise ValueError("No tweets available for personality analysis.")
all_tweets = [tweet['content'] for tweet in self.tweets][:max_tweets]
analysis_prompt = f"""Perform a deep psychological analysis of the author based on these tweets:
Core beliefs, emotional tendencies, cognitive patterns, etc.
Tweets for analysis:
{json.dumps(all_tweets, indent=2)}
"""
input_ids = self.tokenizer.encode(analysis_prompt, return_tensors='pt')
output = self.model.generate(input_ids, max_length=500, num_return_sequences=1, temperature=0.7)
personality_analysis = self.tokenizer.decode(output[0], skip_special_tokens=True)
self.personality_profile = personality_analysis
return self.personality_profile
def generate_tweet(self, context="", sample_size=3):
"""Generate a new tweet by sampling random tweets and avoiding repetition."""
if not self.tweets:
return "Error: No tweets available for generation."
# Randomly sample unique tweets
available_tweets = [tweet for tweet in self.tweets if tweet['content'] not in self.used_tweets]
if len(available_tweets) < sample_size:
self.used_tweets.clear() # Reset used tweets if all have been used
available_tweets = self.tweets
sampled_tweets = random.sample(available_tweets, sample_size)
sampled_contents = [tweet['content'] for tweet in sampled_tweets]
# Update the used tweets tracker
self.used_tweets.update(sampled_contents)
# Truncate personality profile to avoid token overflow
personality_profile_excerpt = self.personality_profile[:400] if len(self.personality_profile) > 400 else self.personality_profile
# Construct the prompt
prompt = f"""Based on this personality profile:
{personality_profile_excerpt}
Current context or topic (if any):
{context}
Tweets for context:
{', '.join(sampled_contents)}
**Only generate the tweet. Do not include analysis, explanation, or any other content.**
"""
input_ids = self.tokenizer.encode(prompt, return_tensors='pt')
output = self.model.generate(input_ids, max_length=150, num_return_sequences=1, temperature=1.0)
generated_tweet = self.tokenizer.decode(output[0], skip_special_tokens=True).strip()
return generated_tweet
# Gradio Interface Function
def gradio_interface(pdf_file, context="AI-powered tweet generation"):
# Initialize the processor with uploaded PDF path
fine_tuned_model_name = 'Manasa1/GPT2_Finetuned_tweets' # Replace with the path to your fine-tuned model
processor = TweetDatasetProcessor(fine_tuned_model_name, pdf_path=pdf_file.name)
# Extract text from PDF and process it
text = processor.extract_text_from_pdf()
tweets = processor.process_pdf_content(text)
# Analyze personality based on tweets
personality_analysis = processor.analyze_personality(max_tweets=50)
# Generate tweet based on the personality analysis and context
generated_tweet = processor.generate_tweet(context=context, sample_size=3)
return personality_analysis, generated_tweet
# Gradio app setup
iface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.File(label="Upload PDF with Tweets"),
gr.Textbox(label="Context for Tweet Generation (optional)", placeholder="e.g., AI-powered tweet generation")
],
outputs=[
gr.Textbox(label="Personality Analysis"),
gr.Textbox(label="Generated Tweet")
],
live=True,
title="AI Personality and Tweet Generation",
description="Automatically analyze personality and generate tweets based on a provided PDF of tweets."
)
# Launch the app
if __name__ == "__main__":
iface.launch()
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import random
from datetime import datetime
from PyPDF2 import PdfReader
import json
from dotenv import load_dotenv
load_dotenv()
class TweetDatasetProcessor:
def __init__(self, fine_tuned_model_name, pdf_path=None):
self.tweets = []
self.personality_profile = {}
self.used_tweets = set() # Track used tweets to avoid repetition
self.pdf_path = pdf_path
# Load fine-tuned model and tokenizer
self.model = AutoModelForCausalLM.from_pretrained(fine_tuned_model_name)
self.tokenizer = AutoTokenizer.from_pretrained(fine_tuned_model_name)
@staticmethod
def _process_line(line):
"""Process a single line."""
line = line.strip()
if not line or line.startswith('http'): # Skip empty lines and URLs
return None
return {
'content': line,
'timestamp': datetime.now(),
'mentions': [word for word in line.split() if word.startswith('@')],
'hashtags': [word for word in line.split() if word.startswith('#')]
}
def extract_text_from_pdf(self):
"""Extract text content from PDF file."""
if not self.pdf_path:
return ""
reader = PdfReader(self.pdf_path)
text = ""
for page in reader.pages:
text += page.extract_text()
return text
def process_pdf_content(self, text):
"""Process PDF content and clean extracted tweets."""
if not text.strip():
raise ValueError("The provided PDF appears to be empty.")
lines = text.split('\n')
clean_tweets = [TweetDatasetProcessor._process_line(line) for line in lines]
self.tweets = [tweet for tweet in clean_tweets if tweet]
if not self.tweets:
raise ValueError("No tweets were extracted from the PDF. Ensure the content is properly formatted.")
return self.tweets
def analyze_personality(self, max_tweets=50):
"""Comprehensive personality analysis using a limited subset of tweets."""
if not self.tweets:
raise ValueError("No tweets available for personality analysis.")
all_tweets = [tweet['content'] for tweet in self.tweets][:max_tweets]
analysis_prompt = f"""Perform a deep psychological analysis of the author based on these tweets:
Core beliefs, emotional tendencies, cognitive patterns, etc.
Tweets for analysis:
{json.dumps(all_tweets, indent=2)}
"""
input_ids = self.tokenizer.encode(analysis_prompt, return_tensors='pt')
output = self.model.generate(input_ids, max_length=500, num_return_sequences=1, temperature=0.7)
personality_analysis = self.tokenizer.decode(output[0], skip_special_tokens=True)
self.personality_profile = personality_analysis
return self.personality_profile
def generate_tweet(self, context="", sample_size=3):
"""Generate a new tweet by sampling random tweets and avoiding repetition."""
if not self.tweets:
return "Error: No tweets available for generation."
# Randomly sample unique tweets
available_tweets = [tweet for tweet in self.tweets if tweet['content'] not in self.used_tweets]
if len(available_tweets) < sample_size:
self.used_tweets.clear() # Reset used tweets if all have been used
available_tweets = self.tweets
sampled_tweets = random.sample(available_tweets, sample_size)
sampled_contents = [tweet['content'] for tweet in sampled_tweets]
# Update the used tweets tracker
self.used_tweets.update(sampled_contents)
# Truncate personality profile to avoid token overflow
personality_profile_excerpt = self.personality_profile[:400] if len(self.personality_profile) > 400 else self.personality_profile
# Construct the prompt
prompt = f"""Based on this personality profile:
{personality_profile_excerpt}
Current context or topic (if any):
{context}
Tweets for context:
{', '.join(sampled_contents)}
**Only generate the tweet. Do not include analysis, explanation, or any other content.**
"""
input_ids = self.tokenizer.encode(prompt, return_tensors='pt')
output = self.model.generate(input_ids, max_length=150, num_return_sequences=1, temperature=1.0)
generated_tweet = self.tokenizer.decode(output[0], skip_special_tokens=True).strip()
return generated_tweet
# Gradio Interface Function
def gradio_interface(pdf_file, context="AI-powered tweet generation"):
# Initialize the processor with uploaded PDF path
fine_tuned_model_name = 'Manasa1/GPT2_Finetuned_tweets' # Replace with the path to your fine-tuned model
pdf_path = 'Dataset (4).pdf'
processor = TweetDatasetProcessor(fine_tuned_model_name, pdf_path=pdf_path)
# Extract text from PDF and process it
text = processor.extract_text_from_pdf()
tweets = processor.process_pdf_content(text)
# Analyze personality based on tweets
personality_analysis = processor.analyze_personality(max_tweets=50)
# Generate tweet based on the personality analysis and context
generated_tweet = processor.generate_tweet(context=context, sample_size=3)
return personality_analysis, generated_tweet
# Gradio app setup
iface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.File(label="Upload PDF with Tweets"),
gr.Textbox(label="Context for Tweet Generation (optional)", placeholder="e.g., AI-powered tweet generation")
],
outputs=[
gr.Textbox(label="Personality Analysis"),
gr.Textbox(label="Generated Tweet")
],
live=True,
title="AI Personality and Tweet Generation",
description="Automatically analyze personality and generate tweets based on a provided PDF of tweets."
)
# Launch the app
if __name__ == "__main__":
iface.launch()