multimodalart HF staff commited on
Commit
099c99b
1 Parent(s): e765369

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -7
app.py CHANGED
@@ -1,14 +1,15 @@
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
- from diffusers import DiffusionPipeline
5
  import torch
6
 
7
  device = "cuda" if torch.cuda.is_available() else "cpu"
8
 
9
  if torch.cuda.is_available():
10
  torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
 
12
  pipe.enable_xformers_memory_efficient_attention()
13
  pipe = pipe.to(device)
14
  else:
@@ -103,7 +104,7 @@ with gr.Blocks(css=css) as demo:
103
  minimum=256,
104
  maximum=MAX_IMAGE_SIZE,
105
  step=32,
106
- value=512,
107
  )
108
 
109
  height = gr.Slider(
@@ -111,7 +112,7 @@ with gr.Blocks(css=css) as demo:
111
  minimum=256,
112
  maximum=MAX_IMAGE_SIZE,
113
  step=32,
114
- value=512,
115
  )
116
 
117
  with gr.Row():
@@ -121,15 +122,15 @@ with gr.Blocks(css=css) as demo:
121
  minimum=0.0,
122
  maximum=10.0,
123
  step=0.1,
124
- value=0.0,
125
  )
126
 
127
  num_inference_steps = gr.Slider(
128
  label="Number of inference steps",
129
  minimum=1,
130
- maximum=12,
131
  step=1,
132
- value=2,
133
  )
134
 
135
  gr.Examples(
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
+ from diffusers import AuraFlowPipeline
5
  import torch
6
 
7
  device = "cuda" if torch.cuda.is_available() else "cpu"
8
 
9
  if torch.cuda.is_available():
10
  torch.cuda.max_memory_allocated(device=device)
11
+ pipe = AuraFlowPipeline.from_pretrained("AuraDiffusion/auradiffusion-v0.1a0",
12
+ torch_dtype=torch.float16)
13
  pipe.enable_xformers_memory_efficient_attention()
14
  pipe = pipe.to(device)
15
  else:
 
104
  minimum=256,
105
  maximum=MAX_IMAGE_SIZE,
106
  step=32,
107
+ value=1024,
108
  )
109
 
110
  height = gr.Slider(
 
112
  minimum=256,
113
  maximum=MAX_IMAGE_SIZE,
114
  step=32,
115
+ value=1024,
116
  )
117
 
118
  with gr.Row():
 
122
  minimum=0.0,
123
  maximum=10.0,
124
  step=0.1,
125
+ value=5.0,
126
  )
127
 
128
  num_inference_steps = gr.Slider(
129
  label="Number of inference steps",
130
  minimum=1,
131
+ maximum=50,
132
  step=1,
133
+ value=50,
134
  )
135
 
136
  gr.Examples(