Maikou's picture
related files and example data
b621857
raw
history blame
2.82 kB
# -*- coding: utf-8 -*-
import importlib
from omegaconf import OmegaConf, DictConfig, ListConfig
import torch
import torch.distributed as dist
from typing import Union
def get_config_from_file(config_file: str) -> Union[DictConfig, ListConfig]:
config_file = OmegaConf.load(config_file)
if 'base_config' in config_file.keys():
if config_file['base_config'] == "default_base":
base_config = OmegaConf.create()
# base_config = get_default_config()
elif config_file['base_config'].endswith(".yaml"):
base_config = get_config_from_file(config_file['base_config'])
else:
raise ValueError(f"{config_file} must be `.yaml` file or it contains `base_config` key.")
config_file = {key: value for key, value in config_file if key != "base_config"}
return OmegaConf.merge(base_config, config_file)
return config_file
def get_obj_from_str(string, reload=False):
module, cls = string.rsplit(".", 1)
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
def get_obj_from_config(config):
if "target" not in config:
raise KeyError("Expected key `target` to instantiate.")
return get_obj_from_str(config["target"])
def instantiate_from_config(config, **kwargs):
if "target" not in config:
raise KeyError("Expected key `target` to instantiate.")
cls = get_obj_from_str(config["target"])
params = config.get("params", dict())
# params.update(kwargs)
# instance = cls(**params)
kwargs.update(params)
instance = cls(**kwargs)
return instance
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def all_gather_batch(tensors):
"""
Performs all_gather operation on the provided tensors.
"""
# Queue the gathered tensors
world_size = get_world_size()
# There is no need for reduction in the single-proc case
if world_size == 1:
return tensors
tensor_list = []
output_tensor = []
for tensor in tensors:
tensor_all = [torch.ones_like(tensor) for _ in range(world_size)]
dist.all_gather(
tensor_all,
tensor,
async_op=False # performance opt
)
tensor_list.append(tensor_all)
for tensor_all in tensor_list:
output_tensor.append(torch.cat(tensor_all, dim=0))
return output_tensor