Michelangelo / configs /deploy /clip_sp+pk_aslperceiver=256_01_4096_8_udt=03.yaml
Maikou's picture
related files and example data
b621857
raw
history blame
5.58 kB
name: "0428_clip_subsp+pk_sal_perceiver=256_01_4096_8_udt=03"
#wandb:
# project: "image_diffuser"
# offline: false
training:
steps: 500000
use_amp: true
ckpt_path: ""
base_lr: 1.e-4
gradient_clip_val: 5.0
gradient_clip_algorithm: "norm"
every_n_train_steps: 5000
val_check_interval: 1024
limit_val_batches: 16
# dataset
dataset:
target: michelangelo.data.asl_torch_dataset.MultiAlignedShapeImageTextModule
params:
batch_size: 38
num_workers: 4
val_num_workers: 4
buffer_size: 256
return_normal: true
random_crop: false
surface_sampling: true
pc_size: &pc_size 4096
image_size: 384
mean: &mean [0.5, 0.5, 0.5]
std: &std [0.5, 0.5, 0.5]
cond_stage_key: "text"
meta_info:
3D-FUTURE:
render_folder: "/root/workspace/cq_workspace/datasets/3D-FUTURE/renders"
tar_folder: "/root/workspace/datasets/make_tars/3D-FUTURE"
ABO:
render_folder: "/root/workspace/cq_workspace/datasets/ABO/renders"
tar_folder: "/root/workspace/datasets/make_tars/ABO"
GSO:
render_folder: "/root/workspace/cq_workspace/datasets/GSO/renders"
tar_folder: "/root/workspace/datasets/make_tars/GSO"
TOYS4K:
render_folder: "/root/workspace/cq_workspace/datasets/TOYS4K/TOYS4K/renders"
tar_folder: "/root/workspace/datasets/make_tars/TOYS4K"
3DCaricShop:
render_folder: "/root/workspace/cq_workspace/datasets/3DCaricShop/renders"
tar_folder: "/root/workspace/datasets/make_tars/3DCaricShop"
Thingi10K:
render_folder: "/root/workspace/cq_workspace/datasets/Thingi10K/renders"
tar_folder: "/root/workspace/datasets/make_tars/Thingi10K"
shapenet:
render_folder: "/root/workspace/cq_workspace/datasets/shapenet/renders"
tar_folder: "/root/workspace/datasets/make_tars/shapenet"
pokemon:
render_folder: "/root/workspace/cq_workspace/datasets/pokemon/renders"
tar_folder: "/root/workspace/datasets/make_tars/pokemon"
objaverse:
render_folder: "/root/workspace/cq_workspace/datasets/objaverse/renders"
tar_folder: "/root/workspace/datasets/make_tars/objaverse"
model:
target: michelangelo.models.asl_diffusion.clip_asl_diffuser_pl_module.ClipASLDiffuser
params:
first_stage_config:
target: michelangelo.models.tsal.asl_pl_module.AlignedShapeAsLatentPLModule
params:
# ckpt_path: "/root/workspace/cq_workspace/michelangelo/experiments/aligned_shape_latents/clip_aslperceiver_sp+pk_01_01/ckpt/ckpt-step=00230000.ckpt"
shape_module_cfg:
target: michelangelo.models.tsal.sal_perceiver.AlignedShapeLatentPerceiver
params:
num_latents: &num_latents 256
embed_dim: &embed_dim 64
point_feats: 3 # normal
num_freqs: 8
include_pi: false
heads: 12
width: 768
num_encoder_layers: 8
num_decoder_layers: 16
use_ln_post: true
init_scale: 0.25
qkv_bias: false
use_checkpoint: true
aligned_module_cfg:
target: michelangelo.models.tsal.clip_asl_module.CLIPAlignedShapeAsLatentModule
params:
clip_model_version: "/mnt/shadow_cv_training/stevenxxliu/checkpoints/clip/clip-vit-large-patch14"
loss_cfg:
target: torch.nn.Identity
cond_stage_config:
target: michelangelo.models.conditional_encoders.encoder_factory.FrozenAlignedCLIPTextEmbedder
params:
version: "/mnt/shadow_cv_training/stevenxxliu/checkpoints/clip/clip-vit-large-patch14"
zero_embedding_radio: 0.1
max_length: 77
first_stage_key: "surface"
cond_stage_key: "text"
scale_by_std: false
denoiser_cfg:
target: michelangelo.models.asl_diffusion.asl_udt.ConditionalASLUDTDenoiser
params:
input_channels: *embed_dim
output_channels: *embed_dim
n_ctx: *num_latents
width: 768
layers: 8 # 2 * 6 + 1 = 13
heads: 12
context_dim: 768
init_scale: 1.0
skip_ln: true
use_checkpoint: true
scheduler_cfg:
guidance_scale: 7.5
num_inference_steps: 50
eta: 0.0
noise:
target: diffusers.schedulers.DDPMScheduler
params:
num_train_timesteps: 1000
beta_start: 0.00085
beta_end: 0.012
beta_schedule: "scaled_linear"
variance_type: "fixed_small"
clip_sample: false
denoise:
target: diffusers.schedulers.DDIMScheduler
params:
num_train_timesteps: 1000
beta_start: 0.00085
beta_end: 0.012
beta_schedule: "scaled_linear"
clip_sample: false # clip sample to -1~1
set_alpha_to_one: false
steps_offset: 1
optimizer_cfg:
optimizer:
target: torch.optim.AdamW
params:
betas: [0.9, 0.99]
eps: 1.e-6
weight_decay: 1.e-2
scheduler:
target: michelangelo.utils.trainings.lr_scheduler.LambdaWarmUpCosineFactorScheduler
params:
warm_up_steps: 5000
f_start: 1.e-6
f_min: 1.e-3
f_max: 1.0
loss_cfg:
loss_type: "mse"
logger:
target: michelangelo.utils.trainings.mesh_log_callback.TextConditionalASLDiffuserLogger
params:
step_frequency: 1000
num_samples: 4
sample_times: 4
bounds: [-1.1, -1.1, -1.1, 1.1, 1.1, 1.1]
octree_depth: 7
num_chunks: 10000