Michelangelo / michelangelo /models /modules /diffusion_transformer.py
Maikou's picture
related files and example data
b621857
raw
history blame
6.38 kB
# -*- coding: utf-8 -*-
import math
import torch
import torch.nn as nn
from typing import Optional
from michelangelo.models.modules.checkpoint import checkpoint
from michelangelo.models.modules.transformer_blocks import (
init_linear,
MLP,
MultiheadCrossAttention,
MultiheadAttention,
ResidualAttentionBlock
)
class AdaLayerNorm(nn.Module):
def __init__(self,
device: torch.device,
dtype: torch.dtype,
width: int):
super().__init__()
self.silu = nn.SiLU(inplace=True)
self.linear = nn.Linear(width, width * 2, device=device, dtype=dtype)
self.layernorm = nn.LayerNorm(width, elementwise_affine=False, device=device, dtype=dtype)
def forward(self, x, timestep):
emb = self.linear(timestep)
scale, shift = torch.chunk(emb, 2, dim=2)
x = self.layernorm(x) * (1 + scale) + shift
return x
class DitBlock(nn.Module):
def __init__(
self,
*,
device: torch.device,
dtype: torch.dtype,
n_ctx: int,
width: int,
heads: int,
context_dim: int,
qkv_bias: bool = False,
init_scale: float = 1.0,
use_checkpoint: bool = False
):
super().__init__()
self.use_checkpoint = use_checkpoint
self.attn = MultiheadAttention(
device=device,
dtype=dtype,
n_ctx=n_ctx,
width=width,
heads=heads,
init_scale=init_scale,
qkv_bias=qkv_bias
)
self.ln_1 = AdaLayerNorm(device, dtype, width)
if context_dim is not None:
self.ln_2 = AdaLayerNorm(device, dtype, width)
self.cross_attn = MultiheadCrossAttention(
device=device,
dtype=dtype,
width=width,
heads=heads,
data_width=context_dim,
init_scale=init_scale,
qkv_bias=qkv_bias
)
self.mlp = MLP(device=device, dtype=dtype, width=width, init_scale=init_scale)
self.ln_3 = AdaLayerNorm(device, dtype, width)
def forward(self, x: torch.Tensor, t: torch.Tensor, context: Optional[torch.Tensor] = None):
return checkpoint(self._forward, (x, t, context), self.parameters(), self.use_checkpoint)
def _forward(self, x: torch.Tensor, t: torch.Tensor, context: Optional[torch.Tensor] = None):
x = x + self.attn(self.ln_1(x, t))
if context is not None:
x = x + self.cross_attn(self.ln_2(x, t), context)
x = x + self.mlp(self.ln_3(x, t))
return x
class DiT(nn.Module):
def __init__(
self,
*,
device: Optional[torch.device],
dtype: Optional[torch.dtype],
n_ctx: int,
width: int,
layers: int,
heads: int,
context_dim: int,
init_scale: float = 0.25,
qkv_bias: bool = False,
use_checkpoint: bool = False
):
super().__init__()
self.n_ctx = n_ctx
self.width = width
self.layers = layers
self.resblocks = nn.ModuleList(
[
DitBlock(
device=device,
dtype=dtype,
n_ctx=n_ctx,
width=width,
heads=heads,
context_dim=context_dim,
qkv_bias=qkv_bias,
init_scale=init_scale,
use_checkpoint=use_checkpoint
)
for _ in range(layers)
]
)
def forward(self, x: torch.Tensor, t: torch.Tensor, context: Optional[torch.Tensor] = None):
for block in self.resblocks:
x = block(x, t, context)
return x
class UNetDiffusionTransformer(nn.Module):
def __init__(
self,
*,
device: Optional[torch.device],
dtype: Optional[torch.dtype],
n_ctx: int,
width: int,
layers: int,
heads: int,
init_scale: float = 0.25,
qkv_bias: bool = False,
skip_ln: bool = False,
use_checkpoint: bool = False
):
super().__init__()
self.n_ctx = n_ctx
self.width = width
self.layers = layers
self.encoder = nn.ModuleList()
for _ in range(layers):
resblock = ResidualAttentionBlock(
device=device,
dtype=dtype,
n_ctx=n_ctx,
width=width,
heads=heads,
init_scale=init_scale,
qkv_bias=qkv_bias,
use_checkpoint=use_checkpoint
)
self.encoder.append(resblock)
self.middle_block = ResidualAttentionBlock(
device=device,
dtype=dtype,
n_ctx=n_ctx,
width=width,
heads=heads,
init_scale=init_scale,
qkv_bias=qkv_bias,
use_checkpoint=use_checkpoint
)
self.decoder = nn.ModuleList()
for _ in range(layers):
resblock = ResidualAttentionBlock(
device=device,
dtype=dtype,
n_ctx=n_ctx,
width=width,
heads=heads,
init_scale=init_scale,
qkv_bias=qkv_bias,
use_checkpoint=use_checkpoint
)
linear = nn.Linear(width * 2, width, device=device, dtype=dtype)
init_linear(linear, init_scale)
layer_norm = nn.LayerNorm(width, device=device, dtype=dtype) if skip_ln else None
self.decoder.append(nn.ModuleList([resblock, linear, layer_norm]))
def forward(self, x: torch.Tensor):
enc_outputs = []
for block in self.encoder:
x = block(x)
enc_outputs.append(x)
x = self.middle_block(x)
for i, (resblock, linear, layer_norm) in enumerate(self.decoder):
x = torch.cat([enc_outputs.pop(), x], dim=-1)
x = linear(x)
if layer_norm is not None:
x = layer_norm(x)
x = resblock(x)
return x