Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
import math | |
import torch | |
import torch.nn as nn | |
from typing import Optional | |
from michelangelo.models.modules.checkpoint import checkpoint | |
from michelangelo.models.modules.transformer_blocks import ( | |
init_linear, | |
MLP, | |
MultiheadCrossAttention, | |
MultiheadAttention, | |
ResidualAttentionBlock | |
) | |
class AdaLayerNorm(nn.Module): | |
def __init__(self, | |
device: torch.device, | |
dtype: torch.dtype, | |
width: int): | |
super().__init__() | |
self.silu = nn.SiLU(inplace=True) | |
self.linear = nn.Linear(width, width * 2, device=device, dtype=dtype) | |
self.layernorm = nn.LayerNorm(width, elementwise_affine=False, device=device, dtype=dtype) | |
def forward(self, x, timestep): | |
emb = self.linear(timestep) | |
scale, shift = torch.chunk(emb, 2, dim=2) | |
x = self.layernorm(x) * (1 + scale) + shift | |
return x | |
class DitBlock(nn.Module): | |
def __init__( | |
self, | |
*, | |
device: torch.device, | |
dtype: torch.dtype, | |
n_ctx: int, | |
width: int, | |
heads: int, | |
context_dim: int, | |
qkv_bias: bool = False, | |
init_scale: float = 1.0, | |
use_checkpoint: bool = False | |
): | |
super().__init__() | |
self.use_checkpoint = use_checkpoint | |
self.attn = MultiheadAttention( | |
device=device, | |
dtype=dtype, | |
n_ctx=n_ctx, | |
width=width, | |
heads=heads, | |
init_scale=init_scale, | |
qkv_bias=qkv_bias | |
) | |
self.ln_1 = AdaLayerNorm(device, dtype, width) | |
if context_dim is not None: | |
self.ln_2 = AdaLayerNorm(device, dtype, width) | |
self.cross_attn = MultiheadCrossAttention( | |
device=device, | |
dtype=dtype, | |
width=width, | |
heads=heads, | |
data_width=context_dim, | |
init_scale=init_scale, | |
qkv_bias=qkv_bias | |
) | |
self.mlp = MLP(device=device, dtype=dtype, width=width, init_scale=init_scale) | |
self.ln_3 = AdaLayerNorm(device, dtype, width) | |
def forward(self, x: torch.Tensor, t: torch.Tensor, context: Optional[torch.Tensor] = None): | |
return checkpoint(self._forward, (x, t, context), self.parameters(), self.use_checkpoint) | |
def _forward(self, x: torch.Tensor, t: torch.Tensor, context: Optional[torch.Tensor] = None): | |
x = x + self.attn(self.ln_1(x, t)) | |
if context is not None: | |
x = x + self.cross_attn(self.ln_2(x, t), context) | |
x = x + self.mlp(self.ln_3(x, t)) | |
return x | |
class DiT(nn.Module): | |
def __init__( | |
self, | |
*, | |
device: Optional[torch.device], | |
dtype: Optional[torch.dtype], | |
n_ctx: int, | |
width: int, | |
layers: int, | |
heads: int, | |
context_dim: int, | |
init_scale: float = 0.25, | |
qkv_bias: bool = False, | |
use_checkpoint: bool = False | |
): | |
super().__init__() | |
self.n_ctx = n_ctx | |
self.width = width | |
self.layers = layers | |
self.resblocks = nn.ModuleList( | |
[ | |
DitBlock( | |
device=device, | |
dtype=dtype, | |
n_ctx=n_ctx, | |
width=width, | |
heads=heads, | |
context_dim=context_dim, | |
qkv_bias=qkv_bias, | |
init_scale=init_scale, | |
use_checkpoint=use_checkpoint | |
) | |
for _ in range(layers) | |
] | |
) | |
def forward(self, x: torch.Tensor, t: torch.Tensor, context: Optional[torch.Tensor] = None): | |
for block in self.resblocks: | |
x = block(x, t, context) | |
return x | |
class UNetDiffusionTransformer(nn.Module): | |
def __init__( | |
self, | |
*, | |
device: Optional[torch.device], | |
dtype: Optional[torch.dtype], | |
n_ctx: int, | |
width: int, | |
layers: int, | |
heads: int, | |
init_scale: float = 0.25, | |
qkv_bias: bool = False, | |
skip_ln: bool = False, | |
use_checkpoint: bool = False | |
): | |
super().__init__() | |
self.n_ctx = n_ctx | |
self.width = width | |
self.layers = layers | |
self.encoder = nn.ModuleList() | |
for _ in range(layers): | |
resblock = ResidualAttentionBlock( | |
device=device, | |
dtype=dtype, | |
n_ctx=n_ctx, | |
width=width, | |
heads=heads, | |
init_scale=init_scale, | |
qkv_bias=qkv_bias, | |
use_checkpoint=use_checkpoint | |
) | |
self.encoder.append(resblock) | |
self.middle_block = ResidualAttentionBlock( | |
device=device, | |
dtype=dtype, | |
n_ctx=n_ctx, | |
width=width, | |
heads=heads, | |
init_scale=init_scale, | |
qkv_bias=qkv_bias, | |
use_checkpoint=use_checkpoint | |
) | |
self.decoder = nn.ModuleList() | |
for _ in range(layers): | |
resblock = ResidualAttentionBlock( | |
device=device, | |
dtype=dtype, | |
n_ctx=n_ctx, | |
width=width, | |
heads=heads, | |
init_scale=init_scale, | |
qkv_bias=qkv_bias, | |
use_checkpoint=use_checkpoint | |
) | |
linear = nn.Linear(width * 2, width, device=device, dtype=dtype) | |
init_linear(linear, init_scale) | |
layer_norm = nn.LayerNorm(width, device=device, dtype=dtype) if skip_ln else None | |
self.decoder.append(nn.ModuleList([resblock, linear, layer_norm])) | |
def forward(self, x: torch.Tensor): | |
enc_outputs = [] | |
for block in self.encoder: | |
x = block(x) | |
enc_outputs.append(x) | |
x = self.middle_block(x) | |
for i, (resblock, linear, layer_norm) in enumerate(self.decoder): | |
x = torch.cat([enc_outputs.pop(), x], dim=-1) | |
x = linear(x) | |
if layer_norm is not None: | |
x = layer_norm(x) | |
x = resblock(x) | |
return x | |