Spaces:
Build error
Build error
# -*- coding: utf-8 -*- | |
import torch | |
import torch.nn as nn | |
from typing import Optional | |
from einops import repeat | |
import math | |
from michelangelo.models.modules import checkpoint | |
from michelangelo.models.modules.embedder import FourierEmbedder | |
from michelangelo.models.modules.distributions import DiagonalGaussianDistribution | |
from michelangelo.models.modules.transformer_blocks import ( | |
ResidualCrossAttentionBlock, | |
Transformer | |
) | |
from .tsal_base import ShapeAsLatentModule | |
class CrossAttentionEncoder(nn.Module): | |
def __init__(self, *, | |
device: Optional[torch.device], | |
dtype: Optional[torch.dtype], | |
num_latents: int, | |
fourier_embedder: FourierEmbedder, | |
point_feats: int, | |
width: int, | |
heads: int, | |
layers: int, | |
init_scale: float = 0.25, | |
qkv_bias: bool = True, | |
flash: bool = False, | |
use_ln_post: bool = False, | |
use_checkpoint: bool = False): | |
super().__init__() | |
self.use_checkpoint = use_checkpoint | |
self.num_latents = num_latents | |
self.query = nn.Parameter(torch.randn((num_latents, width), device=device, dtype=dtype) * 0.02) | |
self.fourier_embedder = fourier_embedder | |
self.input_proj = nn.Linear(self.fourier_embedder.out_dim + point_feats, width, device=device, dtype=dtype) | |
self.cross_attn = ResidualCrossAttentionBlock( | |
device=device, | |
dtype=dtype, | |
width=width, | |
heads=heads, | |
init_scale=init_scale, | |
qkv_bias=qkv_bias, | |
flash=flash, | |
) | |
self.self_attn = Transformer( | |
device=device, | |
dtype=dtype, | |
n_ctx=num_latents, | |
width=width, | |
layers=layers, | |
heads=heads, | |
init_scale=init_scale, | |
qkv_bias=qkv_bias, | |
flash=flash, | |
use_checkpoint=False | |
) | |
if use_ln_post: | |
self.ln_post = nn.LayerNorm(width, dtype=dtype, device=device) | |
else: | |
self.ln_post = None | |
def _forward(self, pc, feats): | |
""" | |
Args: | |
pc (torch.FloatTensor): [B, N, 3] | |
feats (torch.FloatTensor or None): [B, N, C] | |
Returns: | |
""" | |
bs = pc.shape[0] | |
data = self.fourier_embedder(pc) | |
if feats is not None: | |
data = torch.cat([data, feats], dim=-1) | |
data = self.input_proj(data) | |
query = repeat(self.query, "m c -> b m c", b=bs) | |
latents = self.cross_attn(query, data) | |
latents = self.self_attn(latents) | |
if self.ln_post is not None: | |
latents = self.ln_post(latents) | |
return latents, pc | |
def forward(self, pc: torch.FloatTensor, feats: Optional[torch.FloatTensor] = None): | |
""" | |
Args: | |
pc (torch.FloatTensor): [B, N, 3] | |
feats (torch.FloatTensor or None): [B, N, C] | |
Returns: | |
dict | |
""" | |
return checkpoint(self._forward, (pc, feats), self.parameters(), self.use_checkpoint) | |
class CrossAttentionDecoder(nn.Module): | |
def __init__(self, *, | |
device: Optional[torch.device], | |
dtype: Optional[torch.dtype], | |
num_latents: int, | |
out_channels: int, | |
fourier_embedder: FourierEmbedder, | |
width: int, | |
heads: int, | |
init_scale: float = 0.25, | |
qkv_bias: bool = True, | |
flash: bool = False, | |
use_checkpoint: bool = False): | |
super().__init__() | |
self.use_checkpoint = use_checkpoint | |
self.fourier_embedder = fourier_embedder | |
self.query_proj = nn.Linear(self.fourier_embedder.out_dim, width, device=device, dtype=dtype) | |
self.cross_attn_decoder = ResidualCrossAttentionBlock( | |
device=device, | |
dtype=dtype, | |
n_data=num_latents, | |
width=width, | |
heads=heads, | |
init_scale=init_scale, | |
qkv_bias=qkv_bias, | |
flash=flash | |
) | |
self.ln_post = nn.LayerNorm(width, device=device, dtype=dtype) | |
self.output_proj = nn.Linear(width, out_channels, device=device, dtype=dtype) | |
def _forward(self, queries: torch.FloatTensor, latents: torch.FloatTensor): | |
queries = self.query_proj(self.fourier_embedder(queries)) | |
x = self.cross_attn_decoder(queries, latents) | |
x = self.ln_post(x) | |
x = self.output_proj(x) | |
return x | |
def forward(self, queries: torch.FloatTensor, latents: torch.FloatTensor): | |
return checkpoint(self._forward, (queries, latents), self.parameters(), self.use_checkpoint) | |
class ShapeAsLatentPerceiver(ShapeAsLatentModule): | |
def __init__(self, *, | |
device: Optional[torch.device], | |
dtype: Optional[torch.dtype], | |
num_latents: int, | |
point_feats: int = 0, | |
embed_dim: int = 0, | |
num_freqs: int = 8, | |
include_pi: bool = True, | |
width: int, | |
heads: int, | |
num_encoder_layers: int, | |
num_decoder_layers: int, | |
init_scale: float = 0.25, | |
qkv_bias: bool = True, | |
flash: bool = False, | |
use_ln_post: bool = False, | |
use_checkpoint: bool = False): | |
super().__init__() | |
self.use_checkpoint = use_checkpoint | |
self.num_latents = num_latents | |
self.fourier_embedder = FourierEmbedder(num_freqs=num_freqs, include_pi=include_pi) | |
init_scale = init_scale * math.sqrt(1.0 / width) | |
self.encoder = CrossAttentionEncoder( | |
device=device, | |
dtype=dtype, | |
fourier_embedder=self.fourier_embedder, | |
num_latents=num_latents, | |
point_feats=point_feats, | |
width=width, | |
heads=heads, | |
layers=num_encoder_layers, | |
init_scale=init_scale, | |
qkv_bias=qkv_bias, | |
flash=flash, | |
use_ln_post=use_ln_post, | |
use_checkpoint=use_checkpoint | |
) | |
self.embed_dim = embed_dim | |
if embed_dim > 0: | |
# VAE embed | |
self.pre_kl = nn.Linear(width, embed_dim * 2, device=device, dtype=dtype) | |
self.post_kl = nn.Linear(embed_dim, width, device=device, dtype=dtype) | |
self.latent_shape = (num_latents, embed_dim) | |
else: | |
self.latent_shape = (num_latents, width) | |
self.transformer = Transformer( | |
device=device, | |
dtype=dtype, | |
n_ctx=num_latents, | |
width=width, | |
layers=num_decoder_layers, | |
heads=heads, | |
init_scale=init_scale, | |
qkv_bias=qkv_bias, | |
flash=flash, | |
use_checkpoint=use_checkpoint | |
) | |
# geometry decoder | |
self.geo_decoder = CrossAttentionDecoder( | |
device=device, | |
dtype=dtype, | |
fourier_embedder=self.fourier_embedder, | |
out_channels=1, | |
num_latents=num_latents, | |
width=width, | |
heads=heads, | |
init_scale=init_scale, | |
qkv_bias=qkv_bias, | |
flash=flash, | |
use_checkpoint=use_checkpoint | |
) | |
def encode(self, | |
pc: torch.FloatTensor, | |
feats: Optional[torch.FloatTensor] = None, | |
sample_posterior: bool = True): | |
""" | |
Args: | |
pc (torch.FloatTensor): [B, N, 3] | |
feats (torch.FloatTensor or None): [B, N, C] | |
sample_posterior (bool): | |
Returns: | |
latents (torch.FloatTensor) | |
center_pos (torch.FloatTensor or None): | |
posterior (DiagonalGaussianDistribution or None): | |
""" | |
latents, center_pos = self.encoder(pc, feats) | |
posterior = None | |
if self.embed_dim > 0: | |
moments = self.pre_kl(latents) | |
posterior = DiagonalGaussianDistribution(moments, feat_dim=-1) | |
if sample_posterior: | |
latents = posterior.sample() | |
else: | |
latents = posterior.mode() | |
return latents, center_pos, posterior | |
def decode(self, latents: torch.FloatTensor): | |
latents = self.post_kl(latents) | |
return self.transformer(latents) | |
def query_geometry(self, queries: torch.FloatTensor, latents: torch.FloatTensor): | |
logits = self.geo_decoder(queries, latents).squeeze(-1) | |
return logits | |
def forward(self, | |
pc: torch.FloatTensor, | |
feats: torch.FloatTensor, | |
volume_queries: torch.FloatTensor, | |
sample_posterior: bool = True): | |
""" | |
Args: | |
pc (torch.FloatTensor): [B, N, 3] | |
feats (torch.FloatTensor or None): [B, N, C] | |
volume_queries (torch.FloatTensor): [B, P, 3] | |
sample_posterior (bool): | |
Returns: | |
logits (torch.FloatTensor): [B, P] | |
center_pos (torch.FloatTensor): [B, M, 3] | |
posterior (DiagonalGaussianDistribution or None). | |
""" | |
latents, center_pos, posterior = self.encode(pc, feats, sample_posterior=sample_posterior) | |
latents = self.decode(latents) | |
logits = self.query_geometry(volume_queries, latents) | |
return logits, center_pos, posterior | |
class AlignedShapeLatentPerceiver(ShapeAsLatentPerceiver): | |
def __init__(self, *, | |
device: Optional[torch.device], | |
dtype: Optional[torch.dtype], | |
num_latents: int, | |
point_feats: int = 0, | |
embed_dim: int = 0, | |
num_freqs: int = 8, | |
include_pi: bool = True, | |
width: int, | |
heads: int, | |
num_encoder_layers: int, | |
num_decoder_layers: int, | |
init_scale: float = 0.25, | |
qkv_bias: bool = True, | |
flash: bool = False, | |
use_ln_post: bool = False, | |
use_checkpoint: bool = False): | |
super().__init__( | |
device=device, | |
dtype=dtype, | |
num_latents=1 + num_latents, | |
point_feats=point_feats, | |
embed_dim=embed_dim, | |
num_freqs=num_freqs, | |
include_pi=include_pi, | |
width=width, | |
heads=heads, | |
num_encoder_layers=num_encoder_layers, | |
num_decoder_layers=num_decoder_layers, | |
init_scale=init_scale, | |
qkv_bias=qkv_bias, | |
flash=flash, | |
use_ln_post=use_ln_post, | |
use_checkpoint=use_checkpoint | |
) | |
self.width = width | |
def encode(self, | |
pc: torch.FloatTensor, | |
feats: Optional[torch.FloatTensor] = None, | |
sample_posterior: bool = True): | |
""" | |
Args: | |
pc (torch.FloatTensor): [B, N, 3] | |
feats (torch.FloatTensor or None): [B, N, c] | |
sample_posterior (bool): | |
Returns: | |
shape_embed (torch.FloatTensor) | |
kl_embed (torch.FloatTensor): | |
posterior (DiagonalGaussianDistribution or None): | |
""" | |
shape_embed, latents = self.encode_latents(pc, feats) | |
kl_embed, posterior = self.encode_kl_embed(latents, sample_posterior) | |
return shape_embed, kl_embed, posterior | |
def encode_latents(self, | |
pc: torch.FloatTensor, | |
feats: Optional[torch.FloatTensor] = None): | |
x, _ = self.encoder(pc, feats) | |
shape_embed = x[:, 0] | |
latents = x[:, 1:] | |
return shape_embed, latents | |
def encode_kl_embed(self, latents: torch.FloatTensor, sample_posterior: bool = True): | |
posterior = None | |
if self.embed_dim > 0: | |
moments = self.pre_kl(latents) | |
posterior = DiagonalGaussianDistribution(moments, feat_dim=-1) | |
if sample_posterior: | |
kl_embed = posterior.sample() | |
else: | |
kl_embed = posterior.mode() | |
else: | |
kl_embed = latents | |
return kl_embed, posterior | |
def forward(self, | |
pc: torch.FloatTensor, | |
feats: torch.FloatTensor, | |
volume_queries: torch.FloatTensor, | |
sample_posterior: bool = True): | |
""" | |
Args: | |
pc (torch.FloatTensor): [B, N, 3] | |
feats (torch.FloatTensor or None): [B, N, C] | |
volume_queries (torch.FloatTensor): [B, P, 3] | |
sample_posterior (bool): | |
Returns: | |
shape_embed (torch.FloatTensor): [B, projection_dim] | |
logits (torch.FloatTensor): [B, M] | |
posterior (DiagonalGaussianDistribution or None). | |
""" | |
shape_embed, kl_embed, posterior = self.encode(pc, feats, sample_posterior=sample_posterior) | |
latents = self.decode(kl_embed) | |
logits = self.query_geometry(volume_queries, latents) | |
return shape_embed, logits, posterior | |