Mahmudm's picture
Upload 191 files
3a12729 verified
import os
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import matplotlib.ticker as mticker
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import cartopy.io.shapereader as shpreader
from adjustText import adjust_text
from .interpolation import interpolate_grid
from .basemaps import draw_etopo_basemap
import imageio.v2 as imageio
import shutil
import tempfile
class Plot_3DField_Data:
"""
A class for visualizing 3D spatiotemporal field data (e.g., ash concentration) across time and altitude levels.
This class uses matplotlib and cartopy to create:
- Animated GIFs of spatial fields at given altitudes
- Vertical profile animations over time
- Exported static frames with metadata annotations and zoomed views
Parameters
----------
animator : object
A container holding the dataset, including:
- datasets: list of xarray-like DataArrays with 'ash_concentration'
- lons, lats: 1D longitude and latitude arrays
- lat_grid, lon_grid: 2D grid arrays for spatial mapping
- levels: 1D array of vertical altitude levels (e.g., in km)
output_dir : str
Base directory for saving all outputs. Defaults to "plots".
cmap : str
Matplotlib colormap name. Defaults to "rainbow".
fps : int
Frames per second for GIFs. Defaults to 2.
include_metadata : bool
Whether to annotate each figure with simulation metadata. Defaults to True.
threshold : float
Value threshold (e.g., in g/m³) to highlight exceedances. Defaults to 0.1.
zoom_width_deg : float
Width of the zoomed-in region in degrees. Defaults to 6.0.
zoom_height_deg : float
Height of the zoomed-in region in degrees. Defaults to 6.0.
zoom_level : int
Zoom level passed to basemap drawing. Defaults to 7.
basemap_type : str
Type of basemap to draw (passed to draw_etopo_basemap). Defaults to "basemap".
Methods
-------
plot_single_z_level(z_km, filename)
Generate animation over time at a specific altitude level.
plot_vertical_profile_at_time(t_index, filename=None)
Generate vertical profile GIF for a single timestep.
animate_altitude(t_index, output_path)
Animate altitude slices for one timestep.
animate_all_altitude_profiles(output_folder='altitude_profiles')
Generate vertical animations for all time steps.
export_frames_as_jpgs(include_metadata=True)
Export individual frames as static `.jpg` images with annotations.
"""
def __init__(self, animator, output_dir="plots", cmap="rainbow", fps=2,
include_metadata=True, threshold=0.1,
zoom_width_deg=6.0, zoom_height_deg=6.0, zoom_level=7, basemap_type="basemap"):
self.animator = animator
self.output_dir = os.path.abspath(
os.path.join(
os.environ.get("NAME_OUTPUT_DIR", tempfile.gettempdir()),
output_dir
)
)
os.makedirs(self.output_dir, exist_ok=True)
self.cmap = cmap
self.fps = fps
self.include_metadata = include_metadata
self.threshold = threshold
self.zoom_width = zoom_width_deg
self.zoom_height = zoom_height_deg
shp = shpreader.natural_earth(resolution='110m', category='cultural', name='admin_0_countries')
self.country_geoms = list(shpreader.Reader(shp).records())
self.zoom_level=zoom_level
self.basemap_type=basemap_type
#############3
# Load shapefile once
countries_shp = shpreader.natural_earth(
resolution='110m',
category='cultural',
name='admin_0_countries'
)
self.country_geoms = list(shpreader.Reader(countries_shp).records())
# Cache extent bounds
self.lon_min = np.min(self.animator.lons)
self.lon_max = np.max(self.animator.lons)
self.lat_min = np.min(self.animator.lats)
self.lat_max = np.max(self.animator.lats)
#####################3
def _make_dirs(self, path):
path = os.path.abspath(os.path.join(os.getcwd(), os.path.dirname(path)))
os.makedirs(path, exist_ok=True)
def _get_zoom_indices(self, center_lat, center_lon):
lon_min = center_lon - self.zoom_width / 2
lon_max = center_lon + self.zoom_width / 2
lat_min = center_lat - self.zoom_height / 2
lat_max = center_lat + self.zoom_height / 2
lat_idx = np.where((self.animator.lats >= lat_min) & (self.animator.lats <= lat_max))[0]
lon_idx = np.where((self.animator.lons >= lon_min) & (self.animator.lons <= lon_max))[0]
return lat_idx, lon_idx, lon_min, lon_max, lat_min, lat_max
def _get_max_concentration_location(self):
max_conc = -np.inf
center_lat = center_lon = None
for ds in self.animator.datasets:
for z in range(len(self.animator.levels)):
data = ds['ash_concentration'].values[z]
if np.max(data) > max_conc:
max_conc = np.max(data)
max_idx = np.unravel_index(np.argmax(data), data.shape)
center_lat = self.animator.lat_grid[max_idx]
center_lon = self.animator.lon_grid[max_idx]
return center_lat, center_lon
def _add_country_labels(self, ax, extent):
proj = ccrs.PlateCarree()
texts = []
for country in self.country_geoms:
name = country.attributes['NAME_LONG']
geom = country.geometry
try:
lon, lat = geom.centroid.x, geom.centroid.y
if extent[0] <= lon <= extent[1] and extent[2] <= lat <= extent[3]:
text = ax.text(lon, lat, name, fontsize=6, transform=proj,
ha='center', va='center', color='white',
bbox=dict(facecolor='black', alpha=0.5, linewidth=0))
texts.append(text)
except:
continue
adjust_text(texts, ax=ax, only_move={'points': 'y', 'text': 'y'},
arrowprops=dict(arrowstyle="->", color='white', lw=0.5))
def _plot_frame(self, ax, data, lons, lats, title, levels, scale_label, proj):
draw_etopo_basemap(ax, mode=self.basemap_type, zoom=self.zoom_level)
c = ax.contourf(lons, lats, data, levels=levels, cmap=self.cmap, alpha=0.6, transform=proj)
ax.contour(lons, lats, data, levels=levels, colors='black', linewidths=0.5, transform=proj)
ax.set_title(title)
ax.set_extent([lons.min(), lons.max(), lats.min(), lats.max()])
ax.coastlines()
ax.add_feature(cfeature.BORDERS, linestyle=':')
ax.add_feature(cfeature.LAND)
ax.add_feature(cfeature.OCEAN)
return c
# metadata placement function and usage
def _draw_metadata_sidebar(self, fig, meta_dict):
lines = [
f"Run name: {meta_dict.get('run_name', 'N/A')}",
f"Run time: {meta_dict.get('run_time', 'N/A')}",
f"Met data: {meta_dict.get('met_data', 'N/A')}",
f"Start release: {meta_dict.get('start_of_release', 'N/A')}",
f"End release: {meta_dict.get('end_of_release', 'N/A')}",
f"Source strength: {meta_dict.get('source_strength', 'N/A')} g/s",
f"Release loc: {meta_dict.get('release_location', 'N/A')}",
f"Release height: {meta_dict.get('release_height', 'N/A')} m asl",
f"Run duration: {meta_dict.get('run_duration', 'N/A')}"
]
full_text = "\n".join(lines) # ✅ actual newlines
fig.text(0.1, 0.095, full_text, va='center', ha='left',
fontsize=9, family='monospace', color='black',
bbox=dict(facecolor='white', alpha=0.8, edgecolor='gray'))
def plot_single_z_level(self, z_km, filename="z_level.gif"):
if z_km not in self.animator.levels:
print(f"Z level {z_km} km not found.")
return
z_index = np.where(self.animator.levels == z_km)[0][0]
output_path = os.path.join(self.output_dir, "z_levels", filename)
fig = plt.figure(figsize=(16, 8))
proj = ccrs.PlateCarree()
ax1 = fig.add_subplot(1, 2, 1, projection=proj)
ax2 = fig.add_subplot(1, 2, 2, projection=proj)
center_lat, center_lon = self._get_max_concentration_location()
lat_idx, lon_idx, lon_min, lon_max, lat_min, lat_max = self._get_zoom_indices(center_lat, center_lon)
lat_zoom = self.animator.lats[lat_idx]
lon_zoom = self.animator.lons[lon_idx]
lon_zoom_grid, lat_zoom_grid = np.meshgrid(lon_zoom, lat_zoom)
meta = self.animator.datasets[0].attrs
valid_frames = []
for t in range(len(self.animator.datasets)):
interp = interpolate_grid(self.animator.datasets[t]['ash_concentration'].values[z_index],
self.animator.lon_grid, self.animator.lat_grid)
if np.isfinite(interp).sum() > 0:
valid_frames.append(t)
if not valid_frames:
print(f"No valid frames for Z={z_km} km.")
plt.close()
return
def update(t):
ax1.clear()
ax2.clear()
data = self.animator.datasets[t]['ash_concentration'].values[z_index]
interp = interpolate_grid(data, self.animator.lon_grid, self.animator.lat_grid)
interp = np.where(interp < 0, np.nan, interp)
zoom_plot = interp[np.ix_(lat_idx, lon_idx)]
valid_vals = interp[np.isfinite(interp)]
if valid_vals.size == 0:
return []
min_val, max_val = np.nanmin(valid_vals), np.nanmax(valid_vals)
log_cutoff = 1e-3
use_log = min_val > log_cutoff and (max_val / (min_val + 1e-6)) > 100
levels = (
np.logspace(np.log10(log_cutoff), np.log10(max_val), 20)
if use_log else
np.linspace(0, max_val, 20)
)
data_for_plot = np.where(interp > log_cutoff, interp, np.nan) if use_log else interp
scale_label = "Log" if use_log else "Linear"
c = self._plot_frame(ax1, data_for_plot, self.animator.lons, self.animator.lats,
f"T{t+1} | Alt: {z_km} km (Full - {scale_label})", levels, scale_label, proj)
self._plot_frame(ax2, zoom_plot, lon_zoom, lat_zoom,
f"T{t} | Alt: {z_km} km (Zoom - {scale_label})", levels, scale_label, proj)
self._add_country_labels(ax1, [self.animator.lons.min(), self.animator.lons.max(),
self.animator.lats.min(), self.animator.lats.max()])
self._add_country_labels(ax2, [lon_min, lon_max, lat_min, lat_max])
if not hasattr(update, "colorbar"):
update.colorbar = fig.colorbar(c, ax=[ax1, ax2], orientation='vertical',
label="Ash concentration (g/m³)")
formatter = mticker.FuncFormatter(lambda x, _: f'{x:.2g}')
update.colorbar.ax.yaxis.set_major_formatter(formatter)
# ✅ Draw threshold outline and label only if exceeded
if np.nanmax(valid_vals) > self.threshold:
ax1.contour(self.animator.lons, self.animator.lats, interp, levels=[self.threshold],
colors='red', linewidths=2, transform=proj)
ax2.contour(lon_zoom, lat_zoom, zoom_plot, levels=[self.threshold],
colors='red', linewidths=2, transform=proj)
ax2.text(0.99, 0.01, f"⚠ Max Thresold Exceed: {np.nanmax(valid_vals):.2f} > {self.threshold} g/m³",
transform=ax2.transAxes, ha='right', va='bottom',
fontsize=9, color='red',
bbox=dict(facecolor='white', alpha=0.8, edgecolor='red'))
return []
self._draw_metadata_sidebar(fig, meta)
self._make_dirs(output_path)
fig.tight_layout()
ani = animation.FuncAnimation(fig, update, frames=valid_frames, blit=False, cache_frame_data =False)
ani.save(output_path, writer='pillow', fps=self.fps, dpi=300)
plt.close()
print(f"✅ Saved Z-level animation to {output_path}")
def plot_vertical_profile_at_time(self, t_index, filename=None):
time_label = f"T{t_index+1}"
for z_index, z_val in enumerate(self.animator.levels):
filename = f"TimeSlices_Z{z_val:.1f}km.gif"
self.plot_single_z_level(z_val, filename=os.path.join("vertical_profiles_timeSlice", filename))
################################################
def animate_altitude(self, t_index: int, output_path: str):
if not (0 <= t_index < len(self.animator.datasets)):
print(f"Invalid time index {t_index}. Must be between 0 and {len(self.animator.datasets) - 1}.")
ds = self.animator.datasets[t_index]
fig = plt.figure(figsize=(18, 7))
proj = ccrs.PlateCarree()
ax1 = fig.add_subplot(1, 2, 1, projection=proj)
ax2 = fig.add_subplot(1, 2, 2, projection=proj)
meta = ds.attrs
center_lat, center_lon = self._get_max_concentration_location()
if center_lat is None or center_lon is None:
print(f"No valid data found for time T{t_index + 1}. Skipping...")
plt.close()
return
lat_idx, lon_idx, lon_min, lon_max, lat_min, lat_max = self._get_zoom_indices(center_lat, center_lon)
lat_zoom = self.animator.lats[lat_idx]
lon_zoom = self.animator.lons[lon_idx]
lon_zoom_grid, lat_zoom_grid = np.meshgrid(lon_zoom, lat_zoom)
z_indices_with_data = []
for z_index in range(len(self.animator.levels)):
data = ds['ash_concentration'].values[z_index]
interp = interpolate_grid(data, self.animator.lon_grid, self.animator.lat_grid)
if np.isfinite(interp).sum() > 0:
z_indices_with_data.append(z_index)
if not z_indices_with_data:
print(f"No valid Z-levels at time T{t_index + 1}.")
plt.close()
return
def update(z_index):
ax1.clear()
ax2.clear()
data = ds['ash_concentration'].values[z_index]
interp = interpolate_grid(data, self.animator.lon_grid, self.animator.lat_grid)
interp = np.where(interp < 0, np.nan, interp)
zoom_plot = interp[np.ix_(lat_idx, lon_idx)]
valid_vals = interp[np.isfinite(interp)]
if valid_vals.size == 0:
return []
min_val, max_val = np.nanmin(valid_vals), np.nanmax(valid_vals)
log_cutoff = 1e-3
use_log = min_val > log_cutoff and (max_val / (min_val + 1e-6)) > 100
levels = np.logspace(np.log10(log_cutoff), np.log10(max_val), 20) if use_log else np.linspace(0, max_val, 20)
data_for_plot = np.where(interp > log_cutoff, interp, np.nan) if use_log else interp
scale_label = "Log" if use_log else "Linear"
title1 = f"T{t_index + 1} | Alt: {self.animator.levels[z_index]} km (Full - {scale_label})"
title2 = f"T{t_index + 1} | Alt: {self.animator.levels[z_index]} km (Zoom - {scale_label})"
c1 = self._plot_frame(ax1, data_for_plot, self.animator.lons, self.animator.lats, title1, levels, scale_label, proj)
self._plot_frame(ax2, zoom_plot, lon_zoom, lat_zoom, title2, levels, scale_label, proj)
self._add_country_labels(ax1, [self.lon_min, self.lon_max, self.lat_min, self.lat_max])
self._add_country_labels(ax2, [lon_min, lon_max, lat_min, lat_max])
if self.include_metadata:
self._draw_metadata_sidebar(fig, meta)
if not hasattr(update, "colorbar"):
update.colorbar = fig.colorbar(c1, ax=[ax1, ax2], orientation='vertical',
label="Ash concentration (g/m³)", shrink=0.75)
formatter = mticker.FuncFormatter(lambda x, _: f'{x:.2g}')
update.colorbar.ax.yaxis.set_major_formatter(formatter)
if np.nanmax(valid_vals) > self.threshold:
ax1.contour(self.animator.lons, self.animator.lats, interp, levels=[self.threshold],
colors='red', linewidths=2, transform=proj)
ax2.contour(lon_zoom, lat_zoom, zoom_plot, levels=[self.threshold],
colors='red', linewidths=2, transform=proj)
ax2.text(0.99, 0.01, f"⚠ Max Thresold Exceed: {np.nanmax(valid_vals):.2f} > {self.threshold} g/m³",
transform=ax2.transAxes, ha='right', va='bottom',
fontsize=9, color='red',
bbox=dict(facecolor='white', alpha=0.8, edgecolor='red'))
return []
os.makedirs(os.path.dirname(output_path), exist_ok=True)
#fig.set_size_inches(18, 7)
fig.tight_layout(rect=[0.02, 0.02, 0.98, 0.98])
ani = animation.FuncAnimation(fig, update, frames=z_indices_with_data, blit=False, cache_frame_data =False)
ani.save(output_path, writer='pillow', fps=self.fps, dpi=300)
plt.close()
print(f"✅ Saved vertical profile animation for T{t_index + 1} to {output_path}")
def animate_all_altitude_profiles(self, output_folder='altitude_profiles'):
output_folder = os.path.join(self.output_dir, "altitude_profiles")
os.makedirs(output_folder, exist_ok=True)
for t_index in range(len(self.animator.datasets)):
output_path = os.path.join(output_folder, f"vertical_T{t_index + 1:02d}.gif")
print(f"🔄 Generating vertical profile animation for T{t_index + 1}...")
self.animate_altitude(t_index, output_path)
def export_frames_as_jpgs(self, include_metadata: bool = True):
output_folder = os.path.join(self.output_dir, "frames")
os.makedirs(output_folder, exist_ok=True)
meta = self.animator.datasets[0].attrs
legend_text = "\\n".join([
f"Run name: {meta.get('run_name', 'N/A')}",
f"Run time: {meta.get('run_time', 'N/A')}",
f"Met data: {meta.get('met_data', 'N/A')}",
f"Start release: {meta.get('start_of_release', 'N/A')}",
f"End release: {meta.get('end_of_release', 'N/A')}",
f"Strength: {meta.get('source_strength', 'N/A')} g/s",
f"Location: {meta.get('release_location', 'N/A')}",
f"Height: {meta.get('release_height', 'N/A')} m asl",
f"Duration: {meta.get('run_duration', 'N/A')}"
])
for z_index, z_val in enumerate(self.animator.levels):
z_dir = os.path.join(output_folder, f"Z{z_val:.1f}km")
os.makedirs(z_dir, exist_ok=True)
for t in range(len(self.animator.datasets)):
data = self.animator.datasets[t]['ash_concentration'].values[z_index]
interp = interpolate_grid(data, self.animator.lon_grid, self.animator.lat_grid)
if not np.isfinite(interp).any():
continue
fig = plt.figure(figsize=(16, 8))
proj = ccrs.PlateCarree()
ax1 = fig.add_subplot(1, 2, 1, projection=proj)
ax2 = fig.add_subplot(1, 2, 2, projection=proj)
valid_vals = interp[np.isfinite(interp)]
min_val, max_val = np.nanmin(valid_vals), np.nanmax(valid_vals)
log_cutoff = 1e-3
use_log = min_val > log_cutoff and (max_val / (min_val + 1e-6)) > 100
levels = np.logspace(np.log10(log_cutoff), np.log10(max_val), 20) if use_log else np.linspace(0, max_val, 20)
data_for_plot = np.where(interp > log_cutoff, interp, np.nan) if use_log else interp
scale_label = "Log" if use_log else "Linear"
center_lat, center_lon = self._get_max_concentration_location()
lat_idx, lon_idx, lon_min, lon_max, lat_min, lat_max = self._get_zoom_indices(center_lat, center_lon)
zoom_plot = interp[np.ix_(lat_idx, lon_idx)]
lon_zoom = self.animator.lons[lon_idx]
lat_zoom = self.animator.lats[lat_idx]
c1 = self._plot_frame(ax1, data_for_plot, self.animator.lons, self.animator.lats,
f"T{t+1} | Alt: {z_val} km (Full - {scale_label})", levels, scale_label, proj)
self._plot_frame(ax2, zoom_plot, lon_zoom, lat_zoom,
f"T{t+1} | Alt: {z_val} km (Zoom - {scale_label})", levels, scale_label, proj)
self._add_country_labels(ax1, [self.animator.lons.min(), self.animator.lons.max(),
self.animator.lats.min(), self.animator.lats.max()])
self._add_country_labels(ax2, [lon_min, lon_max, lat_min, lat_max])
if np.nanmax(valid_vals) > self.threshold:
ax1.contour(self.animator.lons, self.animator.lats, interp, levels=[self.threshold],
colors='red', linewidths=2, transform=proj)
ax2.contour(lon_zoom, lat_zoom, zoom_plot, levels=[self.threshold],
colors='red', linewidths=2, transform=proj)
ax2.text(0.99, 0.01, f"⚠ Max: {np.nanmax(valid_vals):.2f} > {self.threshold} g/m³",
transform=ax2.transAxes, ha='right', va='bottom',
fontsize=9, color='red',
bbox=dict(facecolor='white', alpha=0.8, edgecolor='red'))
if include_metadata:
self._draw_metadata_sidebar(fig, meta)
cbar = fig.colorbar(c1, ax=[ax1, ax2], orientation='vertical', shrink=0.75, pad=0.03)
cbar.set_label("Ash concentration (g/m³)")
formatter = mticker.FuncFormatter(lambda x, _: f'{x:.2g}')
cbar.ax.yaxis.set_major_formatter(formatter)
frame_path = os.path.join(z_dir, f"frame_{t+1:04d}.jpg")
plt.savefig(frame_path, bbox_inches='tight')
plt.close(fig)
print(f"📸 Saved {frame_path}")