Spaces:
Running
Running
# -*- coding: utf-8 -*- | |
import gradio as gr | |
import operator | |
import torch | |
from transformers import BertTokenizer, BertForMaskedLM | |
pretrained_model_name_or_path = "Macropodus/macbert4mdcspell_v2" | |
tokenizer = BertTokenizer.from_pretrained(pretrained_model_name_or_path) | |
model = BertForMaskedLM.from_pretrained(pretrained_model_name_or_path) | |
vocab = tokenizer.vocab | |
# from modelscope import AutoTokenizer, AutoModelForMaskedLM | |
# pretrained_model_name_or_path = "Macadam/macbert4mdcspell_v2" | |
# tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path) | |
# model = AutoModelForMaskedLM.from_pretrained(pretrained_model_name_or_path) | |
# vocab = tokenizer.vocab | |
def func_macro_correct(text): | |
with torch.no_grad(): | |
outputs = model(**tokenizer([text], padding=True, return_tensors='pt')) | |
def flag_total_chinese(text): | |
""" | |
judge is total chinese or not, 判断是不是全是中文 | |
Args: | |
text: str, eg. "macadam, 碎石路" | |
Returns: | |
bool, True or False | |
""" | |
for word in text: | |
if not "\u4e00" <= word <= "\u9fa5": | |
return False | |
return True | |
def get_errors_from_diff_length(corrected_text, origin_text, unk_tokens=[], know_tokens=[]): | |
"""Get errors between corrected text and origin text | |
code from: https://github.com/shibing624/pycorrector | |
""" | |
new_corrected_text = "" | |
errors = [] | |
i, j = 0, 0 | |
unk_tokens = unk_tokens or [' ', '“', '”', '‘', '’', '琊', '\n', '…', '擤', '\t', '玕', ''] | |
while i < len(origin_text) and j < len(corrected_text): | |
if origin_text[i] in unk_tokens or origin_text[i] not in know_tokens: | |
new_corrected_text += origin_text[i] | |
i += 1 | |
elif corrected_text[j] in unk_tokens: | |
new_corrected_text += corrected_text[j] | |
j += 1 | |
# Deal with Chinese characters | |
elif flag_total_chinese(origin_text[i]) and flag_total_chinese(corrected_text[j]): | |
# If the two characters are the same, then the two pointers move forward together | |
if origin_text[i] == corrected_text[j]: | |
new_corrected_text += corrected_text[j] | |
i += 1 | |
j += 1 | |
else: | |
# Check for insertion errors | |
if j + 1 < len(corrected_text) and origin_text[i] == corrected_text[j + 1]: | |
errors.append(('', corrected_text[j], j)) | |
new_corrected_text += corrected_text[j] | |
j += 1 | |
# Check for deletion errors | |
elif i + 1 < len(origin_text) and origin_text[i + 1] == corrected_text[j]: | |
errors.append((origin_text[i], '', i)) | |
i += 1 | |
# Check for replacement errors | |
else: | |
errors.append((origin_text[i], corrected_text[j], i)) | |
new_corrected_text += corrected_text[j] | |
i += 1 | |
j += 1 | |
else: | |
new_corrected_text += origin_text[i] | |
if origin_text[i] == corrected_text[j]: | |
j += 1 | |
i += 1 | |
errors = sorted(errors, key=operator.itemgetter(2)) | |
return new_corrected_text, errors | |
def get_errors_from_same_length(corrected_text, origin_text, unk_tokens=[], know_tokens=[]): | |
"""Get new corrected text and errors between corrected text and origin text | |
code from: https://github.com/shibing624/pycorrector | |
""" | |
errors = [] | |
unk_tokens = unk_tokens or [' ', '“', '”', '‘', '’', '琊', '\n', '…', '擤', '\t', '玕', '', ','] | |
for i, ori_char in enumerate(origin_text): | |
if i >= len(corrected_text): | |
continue | |
if ori_char in unk_tokens or ori_char not in know_tokens: | |
# deal with unk word | |
corrected_text = corrected_text[:i] + ori_char + corrected_text[i + 1:] | |
continue | |
if ori_char != corrected_text[i]: | |
if not flag_total_chinese(ori_char): | |
# pass not chinese char | |
corrected_text = corrected_text[:i] + ori_char + corrected_text[i + 1:] | |
continue | |
if not flag_total_chinese(corrected_text[i]): | |
corrected_text = corrected_text[:i] + corrected_text[i + 1:] | |
continue | |
errors.append([ori_char, corrected_text[i], i]) | |
errors = sorted(errors, key=operator.itemgetter(2)) | |
return corrected_text, errors | |
_text = tokenizer.decode(torch.argmax(outputs.logits[0], dim=-1), skip_special_tokens=True).replace(' ', '') | |
corrected_text = _text[:len(text)] | |
print("#" * 128) | |
print(text) | |
print(corrected_text) | |
print(len(text), len(corrected_text)) | |
if len(corrected_text) == len(text): | |
corrected_text, details = get_errors_from_same_length(corrected_text, text, know_tokens=vocab) | |
else: | |
corrected_text, details = get_errors_from_diff_length(corrected_text, text, know_tokens=vocab) | |
print(text, ' => ', corrected_text, details) | |
return corrected_text + ' ' + str(details) | |
if __name__ == '__main__': | |
print(func_macro_correct('他法语说的很好,的语也不错')) | |
examples = [ | |
"夫谷之雨,犹复云之亦从的起,因与疾风俱飘,参于天,集于的。", | |
"机七学习是人工智能领遇最能体现智能的一个分知", | |
'他们的吵翻很不错,再说他们做的咖喱鸡也好吃', | |
"抗疫路上,除了提心吊胆也有难的得欢笑。", | |
"我是练习时长两念半的鸽仁练习生蔡徐坤", | |
"清晨,如纱一般地薄雾笼罩着世界。", | |
"得府许我立庙于此,故请君移去尔。", | |
"他法语说的很好,的语也不错", | |
"遇到一位很棒的奴生跟我疗天", | |
"五年级得数学,我考的很差。", | |
"我们为这个目标努力不解", | |
'今天兴情很好', | |
] | |
gr.Interface( | |
func_macro_correct, | |
inputs='text', | |
outputs='text', | |
title="Chinese Spelling Correction Model Macropodus/macbert4mdcspell_v2", | |
description="Copy or input error Chinese text. Submit and the machine will correct text.", | |
article="Link to <a href='https://github.com/yongzhuo/macro-correct' style='color:blue;' target='_blank\'>Github REPO: macro-correct</a>", | |
examples=examples | |
).launch() # .launch(server_name="0.0.0.0", server_port=8036, share=False, debug=True) | |