Macropodus's picture
Update app.py
6b2b9b7 verified
# -*- coding: utf-8 -*-
import gradio as gr
import operator
import torch
from transformers import BertTokenizer, BertForMaskedLM
pretrained_model_name_or_path = "Macropodus/macbert4mdcspell_v2"
tokenizer = BertTokenizer.from_pretrained(pretrained_model_name_or_path)
model = BertForMaskedLM.from_pretrained(pretrained_model_name_or_path)
vocab = tokenizer.vocab
# from modelscope import AutoTokenizer, AutoModelForMaskedLM
# pretrained_model_name_or_path = "Macadam/macbert4mdcspell_v2"
# tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path)
# model = AutoModelForMaskedLM.from_pretrained(pretrained_model_name_or_path)
# vocab = tokenizer.vocab
def func_macro_correct(text):
with torch.no_grad():
outputs = model(**tokenizer([text], padding=True, return_tensors='pt'))
def flag_total_chinese(text):
"""
judge is total chinese or not, 判断是不是全是中文
Args:
text: str, eg. "macadam, 碎石路"
Returns:
bool, True or False
"""
for word in text:
if not "\u4e00" <= word <= "\u9fa5":
return False
return True
def get_errors_from_diff_length(corrected_text, origin_text, unk_tokens=[], know_tokens=[]):
"""Get errors between corrected text and origin text
code from: https://github.com/shibing624/pycorrector
"""
new_corrected_text = ""
errors = []
i, j = 0, 0
unk_tokens = unk_tokens or [' ', '“', '”', '‘', '’', '琊', '\n', '…', '擤', '\t', '玕', '']
while i < len(origin_text) and j < len(corrected_text):
if origin_text[i] in unk_tokens or origin_text[i] not in know_tokens:
new_corrected_text += origin_text[i]
i += 1
elif corrected_text[j] in unk_tokens:
new_corrected_text += corrected_text[j]
j += 1
# Deal with Chinese characters
elif flag_total_chinese(origin_text[i]) and flag_total_chinese(corrected_text[j]):
# If the two characters are the same, then the two pointers move forward together
if origin_text[i] == corrected_text[j]:
new_corrected_text += corrected_text[j]
i += 1
j += 1
else:
# Check for insertion errors
if j + 1 < len(corrected_text) and origin_text[i] == corrected_text[j + 1]:
errors.append(('', corrected_text[j], j))
new_corrected_text += corrected_text[j]
j += 1
# Check for deletion errors
elif i + 1 < len(origin_text) and origin_text[i + 1] == corrected_text[j]:
errors.append((origin_text[i], '', i))
i += 1
# Check for replacement errors
else:
errors.append((origin_text[i], corrected_text[j], i))
new_corrected_text += corrected_text[j]
i += 1
j += 1
else:
new_corrected_text += origin_text[i]
if origin_text[i] == corrected_text[j]:
j += 1
i += 1
errors = sorted(errors, key=operator.itemgetter(2))
return new_corrected_text, errors
def get_errors_from_same_length(corrected_text, origin_text, unk_tokens=[], know_tokens=[]):
"""Get new corrected text and errors between corrected text and origin text
code from: https://github.com/shibing624/pycorrector
"""
errors = []
unk_tokens = unk_tokens or [' ', '“', '”', '‘', '’', '琊', '\n', '…', '擤', '\t', '玕', '', ',']
for i, ori_char in enumerate(origin_text):
if i >= len(corrected_text):
continue
if ori_char in unk_tokens or ori_char not in know_tokens:
# deal with unk word
corrected_text = corrected_text[:i] + ori_char + corrected_text[i + 1:]
continue
if ori_char != corrected_text[i]:
if not flag_total_chinese(ori_char):
# pass not chinese char
corrected_text = corrected_text[:i] + ori_char + corrected_text[i + 1:]
continue
if not flag_total_chinese(corrected_text[i]):
corrected_text = corrected_text[:i] + corrected_text[i + 1:]
continue
errors.append([ori_char, corrected_text[i], i])
errors = sorted(errors, key=operator.itemgetter(2))
return corrected_text, errors
_text = tokenizer.decode(torch.argmax(outputs.logits[0], dim=-1), skip_special_tokens=True).replace(' ', '')
corrected_text = _text[:len(text)]
print("#" * 128)
print(text)
print(corrected_text)
print(len(text), len(corrected_text))
if len(corrected_text) == len(text):
corrected_text, details = get_errors_from_same_length(corrected_text, text, know_tokens=vocab)
else:
corrected_text, details = get_errors_from_diff_length(corrected_text, text, know_tokens=vocab)
print(text, ' => ', corrected_text, details)
return corrected_text + ' ' + str(details)
if __name__ == '__main__':
print(func_macro_correct('他法语说的很好,的语也不错'))
examples = [
"夫谷之雨,犹复云之亦从的起,因与疾风俱飘,参于天,集于的。",
"机七学习是人工智能领遇最能体现智能的一个分知",
'他们的吵翻很不错,再说他们做的咖喱鸡也好吃',
"抗疫路上,除了提心吊胆也有难的得欢笑。",
"我是练习时长两念半的鸽仁练习生蔡徐坤",
"清晨,如纱一般地薄雾笼罩着世界。",
"得府许我立庙于此,故请君移去尔。",
"他法语说的很好,的语也不错",
"遇到一位很棒的奴生跟我疗天",
"五年级得数学,我考的很差。",
"我们为这个目标努力不解",
'今天兴情很好',
]
gr.Interface(
func_macro_correct,
inputs='text',
outputs='text',
title="Chinese Spelling Correction Model Macropodus/macbert4mdcspell_v2",
description="Copy or input error Chinese text. Submit and the machine will correct text.",
article="Link to <a href='https://github.com/yongzhuo/macro-correct' style='color:blue;' target='_blank\'>Github REPO: macro-correct</a>",
examples=examples
).launch() # .launch(server_name="0.0.0.0", server_port=8036, share=False, debug=True)