# -*- coding: utf-8 -*- import gradio as gr import operator import torch from transformers import BertTokenizer, BertForMaskedLM pretrained_model_name_or_path = "Macropodus/macbert4mdcspell_v2" tokenizer = BertTokenizer.from_pretrained(pretrained_model_name_or_path) model = BertForMaskedLM.from_pretrained(pretrained_model_name_or_path) vocab = tokenizer.vocab # from modelscope import AutoTokenizer, AutoModelForMaskedLM # pretrained_model_name_or_path = "Macadam/macbert4mdcspell_v2" # tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path) # model = AutoModelForMaskedLM.from_pretrained(pretrained_model_name_or_path) # vocab = tokenizer.vocab def func_macro_correct(text): with torch.no_grad(): outputs = model(**tokenizer([text], padding=True, return_tensors='pt')) def flag_total_chinese(text): """ judge is total chinese or not, 判断是不是全是中文 Args: text: str, eg. "macadam, 碎石路" Returns: bool, True or False """ for word in text: if not "\u4e00" <= word <= "\u9fa5": return False return True def get_errors_from_diff_length(corrected_text, origin_text, unk_tokens=[], know_tokens=[]): """Get errors between corrected text and origin text code from: https://github.com/shibing624/pycorrector """ new_corrected_text = "" errors = [] i, j = 0, 0 unk_tokens = unk_tokens or [' ', '“', '”', '‘', '’', '琊', '\n', '…', '擤', '\t', '玕', ''] while i < len(origin_text) and j < len(corrected_text): if origin_text[i] in unk_tokens or origin_text[i] not in know_tokens: new_corrected_text += origin_text[i] i += 1 elif corrected_text[j] in unk_tokens: new_corrected_text += corrected_text[j] j += 1 # Deal with Chinese characters elif flag_total_chinese(origin_text[i]) and flag_total_chinese(corrected_text[j]): # If the two characters are the same, then the two pointers move forward together if origin_text[i] == corrected_text[j]: new_corrected_text += corrected_text[j] i += 1 j += 1 else: # Check for insertion errors if j + 1 < len(corrected_text) and origin_text[i] == corrected_text[j + 1]: errors.append(('', corrected_text[j], j)) new_corrected_text += corrected_text[j] j += 1 # Check for deletion errors elif i + 1 < len(origin_text) and origin_text[i + 1] == corrected_text[j]: errors.append((origin_text[i], '', i)) i += 1 # Check for replacement errors else: errors.append((origin_text[i], corrected_text[j], i)) new_corrected_text += corrected_text[j] i += 1 j += 1 else: new_corrected_text += origin_text[i] if origin_text[i] == corrected_text[j]: j += 1 i += 1 errors = sorted(errors, key=operator.itemgetter(2)) return new_corrected_text, errors def get_errors_from_same_length(corrected_text, origin_text, unk_tokens=[], know_tokens=[]): """Get new corrected text and errors between corrected text and origin text code from: https://github.com/shibing624/pycorrector """ errors = [] unk_tokens = unk_tokens or [' ', '“', '”', '‘', '’', '琊', '\n', '…', '擤', '\t', '玕', '', ','] for i, ori_char in enumerate(origin_text): if i >= len(corrected_text): continue if ori_char in unk_tokens or ori_char not in know_tokens: # deal with unk word corrected_text = corrected_text[:i] + ori_char + corrected_text[i + 1:] continue if ori_char != corrected_text[i]: if not flag_total_chinese(ori_char): # pass not chinese char corrected_text = corrected_text[:i] + ori_char + corrected_text[i + 1:] continue if not flag_total_chinese(corrected_text[i]): corrected_text = corrected_text[:i] + corrected_text[i + 1:] continue errors.append([ori_char, corrected_text[i], i]) errors = sorted(errors, key=operator.itemgetter(2)) return corrected_text, errors _text = tokenizer.decode(torch.argmax(outputs.logits[0], dim=-1), skip_special_tokens=True).replace(' ', '') corrected_text = _text[:len(text)] print("#" * 128) print(text) print(corrected_text) print(len(text), len(corrected_text)) if len(corrected_text) == len(text): corrected_text, details = get_errors_from_same_length(corrected_text, text, know_tokens=vocab) else: corrected_text, details = get_errors_from_diff_length(corrected_text, text, know_tokens=vocab) print(text, ' => ', corrected_text, details) return corrected_text + ' ' + str(details) if __name__ == '__main__': print(func_macro_correct('他法语说的很好,的语也不错')) examples = [ "夫谷之雨,犹复云之亦从的起,因与疾风俱飘,参于天,集于的。", "机七学习是人工智能领遇最能体现智能的一个分知", '他们的吵翻很不错,再说他们做的咖喱鸡也好吃', "抗疫路上,除了提心吊胆也有难的得欢笑。", "我是练习时长两念半的鸽仁练习生蔡徐坤", "清晨,如纱一般地薄雾笼罩着世界。", "得府许我立庙于此,故请君移去尔。", "他法语说的很好,的语也不错", "遇到一位很棒的奴生跟我疗天", "五年级得数学,我考的很差。", "我们为这个目标努力不解", '今天兴情很好', ] gr.Interface( func_macro_correct, inputs='text', outputs='text', title="Chinese Spelling Correction Model Macropodus/macbert4mdcspell_v2", description="Copy or input error Chinese text. Submit and the machine will correct text.", article="Link to Github REPO: macro-correct", examples=examples ).launch() # .launch(server_name="0.0.0.0", server_port=8036, share=False, debug=True)