|
import os |
|
import gradio as gr |
|
import torch |
|
from diffusers import StableDiffusionXLPipeline, AutoencoderKL |
|
from huggingface_hub import hf_hub_download |
|
from safetensors.torch import load_file |
|
from share_btn import community_icon_html, loading_icon_html, share_js |
|
from cog_sdxl_dataset_and_utils import TokenEmbeddingsHandler |
|
import lora |
|
import copy |
|
import json |
|
import gc |
|
|
|
|
|
import inspect |
|
from gradio import routes |
|
from typing import List, Type |
|
|
|
import base64 |
|
from io import BytesIO |
|
from PIL import Image |
|
|
|
MY_TOKEN = os.environ.get("MY_TOKEN") |
|
|
|
print(torch.cuda.is_available()) |
|
|
|
def image_to_base64(image: Image.Image) -> str: |
|
buffered = BytesIO() |
|
image.save(buffered, format="PNG") |
|
img_str = base64.b64encode(buffered.getvalue()).decode() |
|
return img_str |
|
|
|
|
|
def get_types(cls_set: List[Type], component: str): |
|
docset = [] |
|
types = [] |
|
if component == "input": |
|
for cls in cls_set: |
|
doc = inspect.getdoc(cls) |
|
doc_lines = doc.split("\n") |
|
docset.append(doc_lines[1].split(":")[-1]) |
|
types.append(doc_lines[1].split(")")[0].split("(")[-1]) |
|
else: |
|
for cls in cls_set: |
|
doc = inspect.getdoc(cls) |
|
doc_lines = doc.split("\n") |
|
docset.append(doc_lines[-1].split(":")[-1]) |
|
types.append(doc_lines[-1].split(")")[0].split("(")[-1]) |
|
return docset, types |
|
routes.get_types = get_types |
|
|
|
|
|
|
|
with open("sdxl_loras.json", "r") as file: |
|
data = json.load(file) |
|
sdxl_loras_raw = [ |
|
{ |
|
"image": item["image"], |
|
"title": item["title"], |
|
"repo": item["repo"], |
|
"trigger_word": item["trigger_word"], |
|
"weights": item["weights"], |
|
"is_compatible": item["is_compatible"], |
|
"is_pivotal": item.get("is_pivotal", False), |
|
"text_embedding_weights": item.get("text_embedding_weights", None), |
|
"likes": item.get("likes", 0), |
|
"downloads": item.get("downloads", 0), |
|
"is_nc": item.get("is_nc", False) |
|
} |
|
for item in data |
|
] |
|
|
|
device = "cuda" |
|
|
|
state_dicts = {} |
|
|
|
for item in sdxl_loras_raw: |
|
saved_name = hf_hub_download(item["repo"], item["weights"]) |
|
|
|
if not saved_name.endswith('.safetensors'): |
|
state_dict = torch.load(saved_name) |
|
|
|
|
|
else: |
|
state_dict = load_file(saved_name) |
|
|
|
state_dicts[item["repo"]] = { |
|
"saved_name": saved_name, |
|
"state_dict": state_dict |
|
} |
|
|
|
vae = AutoencoderKL.from_pretrained( |
|
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 |
|
) |
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-xl-base-1.0", |
|
vae=vae, |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
original_pipe = copy.deepcopy(pipe) |
|
pipe.to(device) |
|
|
|
last_lora = "" |
|
last_merged = False |
|
last_fused = False |
|
|
|
def update_selection(selected_state: gr.SelectData, sdxl_loras): |
|
lora_repo = sdxl_loras[selected_state.index]["repo"] |
|
instance_prompt = sdxl_loras[selected_state.index]["trigger_word"] |
|
new_placeholder = "Type a prompt. This LoRA applies for all prompts, no need for a trigger word" if instance_prompt == "" else "Type a prompt to use your selected LoRA" |
|
weight_name = sdxl_loras[selected_state.index]["weights"] |
|
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨ {'(non-commercial LoRA, `cc-by-nc`)' if sdxl_loras[selected_state.index]['is_nc'] else '' }" |
|
|
|
return ( |
|
updated_text, |
|
instance_prompt, |
|
gr.update(placeholder=new_placeholder), |
|
selected_state, |
|
) |
|
|
|
|
|
|
|
|
|
def check_selected(selected_state): |
|
if not selected_state: |
|
raise gr.Error("You must select a LoRA dude") |
|
|
|
|
|
def merge_incompatible_lora(full_path_lora, lora_scale): |
|
for weights_file in [full_path_lora]: |
|
if ";" in weights_file: |
|
weights_file, multiplier = weights_file.split(";") |
|
multiplier = float(multiplier) |
|
else: |
|
multiplier = lora_scale |
|
|
|
lora_model, weights_sd = lora.create_network_from_weights( |
|
multiplier, |
|
full_path_lora, |
|
pipe.vae, |
|
pipe.text_encoder, |
|
pipe.unet, |
|
for_inference=True, |
|
) |
|
lora_model.merge_to( |
|
pipe.text_encoder, pipe.unet, weights_sd, torch.float16, "cuda" |
|
) |
|
del weights_sd |
|
del lora_model |
|
gc.collect() |
|
|
|
|
|
def run_lora(prompt, negative, lora_scale, selected_state, sdxl_loras, progress=gr.Progress(track_tqdm=True)): |
|
global last_lora, last_merged, last_fused, pipe |
|
|
|
print("✅ Running LoRAAAAA >>>>>>>>>>>>> >>>>>>>>>>>>>>>>>>>") |
|
|
|
|
|
|
|
|
|
print("selected_state index: ", selected_state.index) |
|
|
|
|
|
if negative == "": |
|
negative = None |
|
|
|
if not selected_state: |
|
raise gr.Error("You must select a LoRA") |
|
repo_name = sdxl_loras[selected_state.index]["repo"] |
|
weight_name = sdxl_loras[selected_state.index]["weights"] |
|
|
|
full_path_lora = state_dicts[repo_name]["saved_name"] |
|
loaded_state_dict = state_dicts[repo_name]["state_dict"] |
|
cross_attention_kwargs = None |
|
if last_lora != repo_name: |
|
if last_merged: |
|
del pipe |
|
gc.collect() |
|
pipe = copy.deepcopy(original_pipe) |
|
pipe.to(device) |
|
elif (last_fused): |
|
pipe.unfuse_lora() |
|
pipe.unload_lora_weights() |
|
is_compatible = sdxl_loras[selected_state.index]["is_compatible"] |
|
|
|
if is_compatible: |
|
pipe.load_lora_weights(loaded_state_dict) |
|
pipe.fuse_lora(lora_scale) |
|
last_fused = True |
|
else: |
|
is_pivotal = sdxl_loras[selected_state.index]["is_pivotal"] |
|
if (is_pivotal): |
|
pipe.load_lora_weights(loaded_state_dict) |
|
pipe.fuse_lora(lora_scale) |
|
last_fused = True |
|
|
|
|
|
text_embedding_name = sdxl_loras[selected_state.index]["text_embedding_weights"] |
|
text_encoders = [pipe.text_encoder, pipe.text_encoder_2] |
|
tokenizers = [pipe.tokenizer, pipe.tokenizer_2] |
|
embedding_path = hf_hub_download( |
|
repo_id=repo_name, filename=text_embedding_name, repo_type="model") |
|
embhandler = TokenEmbeddingsHandler(text_encoders, tokenizers) |
|
embhandler.load_embeddings(embedding_path) |
|
|
|
else: |
|
merge_incompatible_lora(full_path_lora, lora_scale) |
|
last_fused = False |
|
last_merged = True |
|
|
|
image = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative, |
|
width=512, |
|
height=512, |
|
num_inference_steps=20, |
|
guidance_scale=7.5, |
|
).images[0] |
|
last_lora = repo_name |
|
gc.collect() |
|
print("✅ Returning image >>>>>>>>>>>>> >>>>>>>>>>>>>>>>>>>") |
|
print("image: ", image) |
|
|
|
return image, gr.update(visible=True) |
|
|
|
|
|
def run_lora_light(prompt, negative, lora_scale, selected_index, sdxl_loras, progress=gr.Progress(track_tqdm=True)): |
|
global last_lora, last_merged, last_fused, pipe |
|
|
|
print("✅ Running run_lora_light >>>>>>>>>>>>> >>>>>>>>>>>>>>>>>>>") |
|
print("prompt: ", prompt) |
|
print("negative: ", negative) |
|
print("lora_scale: ", lora_scale) |
|
print("selected_state: ", selected_index) |
|
|
|
if negative == "": |
|
negative = None |
|
|
|
|
|
|
|
|
|
repo_name = sdxl_loras[selected_index]["repo"] |
|
weight_name = sdxl_loras[selected_index]["weights"] |
|
|
|
full_path_lora = state_dicts[repo_name]["saved_name"] |
|
loaded_state_dict = state_dicts[repo_name]["state_dict"] |
|
cross_attention_kwargs = None |
|
if last_lora != repo_name: |
|
if last_merged: |
|
del pipe |
|
gc.collect() |
|
pipe = copy.deepcopy(original_pipe) |
|
pipe.to(device) |
|
elif (last_fused): |
|
pipe.unfuse_lora() |
|
pipe.unload_lora_weights() |
|
is_compatible = sdxl_loras[selected_index]["is_compatible"] |
|
|
|
if is_compatible: |
|
pipe.load_lora_weights(loaded_state_dict) |
|
pipe.fuse_lora(lora_scale) |
|
last_fused = True |
|
else: |
|
is_pivotal = sdxl_loras[selected_index]["is_pivotal"] |
|
if (is_pivotal): |
|
pipe.load_lora_weights(loaded_state_dict) |
|
pipe.fuse_lora(lora_scale) |
|
last_fused = True |
|
|
|
|
|
text_embedding_name = sdxl_loras[selected_index]["text_embedding_weights"] |
|
text_encoders = [pipe.text_encoder, pipe.text_encoder_2] |
|
tokenizers = [pipe.tokenizer, pipe.tokenizer_2] |
|
embedding_path = hf_hub_download( |
|
repo_id=repo_name, filename=text_embedding_name, repo_type="model") |
|
embhandler = TokenEmbeddingsHandler(text_encoders, tokenizers) |
|
embhandler.load_embeddings(embedding_path) |
|
|
|
else: |
|
merge_incompatible_lora(full_path_lora, lora_scale) |
|
last_fused = False |
|
last_merged = True |
|
|
|
image = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative, |
|
width=512, |
|
height=512, |
|
num_inference_steps=20, |
|
guidance_scale=7.5, |
|
).images[0] |
|
last_lora = repo_name |
|
gc.collect() |
|
print("image: ", image) |
|
|
|
image_base64 = image_to_base64(image) |
|
|
|
return image_base64 |
|
|
|
|
|
|
|
def shuffle_gallery(sdxl_loras): |
|
order = "likes" |
|
sorted_gallery = sorted(sdxl_loras, key=lambda x: x.get(order, 0), reverse=True) |
|
return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery |
|
|
|
def swap_gallery(order, sdxl_loras): |
|
if(order == "random"): |
|
return shuffle_gallery(sdxl_loras) |
|
else: |
|
sorted_gallery = sorted(sdxl_loras, key=lambda x: x.get(order, 0), reverse=True) |
|
return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery |
|
|
|
|
|
|
|
def hallo(full_string): |
|
print("✅ Hallo >>>>>>>>>") |
|
print("string: ", full_string) |
|
|
|
parts = full_string.split("+") |
|
text_part = parts[0].strip() |
|
number_part = parts[1].strip() |
|
idx_lora = int(number_part) |
|
token_part = parts[2].strip() |
|
|
|
if(token_part == MY_TOKEN): |
|
img_result = run_lora_light(prompt=text_part, negative="No naked bodies", lora_scale=0.8, selected_index=idx_lora, sdxl_loras=sdxl_loras_raw) |
|
return img_result |
|
else: |
|
img_result = {"message": "Failed request", "prompt": text_part} |
|
return img_result |
|
|
|
|
|
|
|
def hadet(x): |
|
return f"Hadet, {x}" |
|
|
|
|
|
|
|
with gr.Blocks(css="custom.css") as demo: |
|
gr_sdxl_loras = gr.State(value=sdxl_loras_raw) |
|
|
|
t = gr.Textbox() |
|
b = gr.Button("Hallo") |
|
a = gr.Button("Hadet") |
|
o = gr.Textbox() |
|
b.click(hallo, inputs=[t], outputs=[o]) |
|
a.click(hadet, inputs=[t], outputs=[o]) |
|
|
|
|
|
title = gr.HTML( |
|
"""<h1>Algorithmic Dream Interpreter | Art Generator</h1>""", |
|
elem_id="title", |
|
) |
|
selected_state = gr.State() |
|
print("✅ selected_state: ", selected_state) |
|
with gr.Row(): |
|
with gr.Box(elem_id="gallery_box"): |
|
order_gallery = gr.Radio(choices=[ |
|
"random", "likes"], value="random", label="Order by", elem_id="order_radio") |
|
gallery = gr.Gallery( |
|
|
|
label="SDXL LoRA Gallery", |
|
allow_preview=False, |
|
columns=4, |
|
elem_id="gallery", |
|
show_share_button=False, |
|
|
|
height=384 |
|
) |
|
|
|
with gr.Column(): |
|
prompt_title = gr.Markdown( |
|
value="### Click on a LoRA in the gallery to select it", |
|
visible=True, |
|
elem_id="selected_lora", |
|
) |
|
with gr.Row(): |
|
prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, |
|
placeholder="Type a prompt after selecting a LoRA", elem_id="prompt") |
|
button = gr.Button("Run", elem_id="run_button") |
|
with gr.Group(elem_id="share-btn-container", visible=False) as share_group: |
|
community_icon = gr.HTML(community_icon_html) |
|
loading_icon = gr.HTML(loading_icon_html) |
|
share_button = gr.Button( |
|
"Share to community", elem_id="share-btn") |
|
result = gr.Image( |
|
interactive=False, label="Generated Image", elem_id="result-image" |
|
) |
|
with gr.Accordion("Advanced options", open=False): |
|
negative = gr.Textbox(label="Negative Prompt") |
|
weight = gr.Slider( |
|
0, 10, value=0.8, step=0.1, label="LoRA weight") |
|
|
|
gallery.select( |
|
fn=update_selection, |
|
inputs=[gr_sdxl_loras], |
|
|
|
outputs=[prompt_title, prompt, prompt, |
|
selected_state], |
|
queue=False, |
|
show_progress=False |
|
) |
|
|
|
|
|
order_gallery.change( |
|
fn=swap_gallery, |
|
inputs=[order_gallery, gr_sdxl_loras], |
|
outputs=[gallery, gr_sdxl_loras], |
|
queue=False |
|
) |
|
|
|
|
|
button.click( |
|
fn=check_selected, |
|
inputs=[selected_state], |
|
queue=False, |
|
show_progress=False |
|
).success( |
|
fn=run_lora, |
|
inputs=[prompt, negative, weight, selected_state, gr_sdxl_loras], |
|
outputs=[result, share_group], |
|
) |
|
|
|
|
|
|
|
demo.load(fn=shuffle_gallery, inputs=[gr_sdxl_loras], outputs=[ |
|
gallery, gr_sdxl_loras], queue=False) |
|
|
|
|
|
|
|
ifa = gr.Interface(lambda: None, inputs=[t], outputs=[o]) |
|
demo.input_components = ifa.input_components |
|
demo.output_components = ifa.output_components |
|
demo.examples = None |
|
demo.predict_durations = [] |
|
|
|
|
|
|
|
demo.launch() |
|
|