yozozaya's picture
update torch load
ae0ca6f
import os
import gradio as gr
import torch
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from share_btn import community_icon_html, loading_icon_html, share_js
from cog_sdxl_dataset_and_utils import TokenEmbeddingsHandler
import lora
import copy
import json
import gc
# import random
import inspect
from gradio import routes
from typing import List, Type
import base64
from io import BytesIO
from PIL import Image
MY_TOKEN = os.environ.get("MY_TOKEN")
print(torch.cuda.is_available())
def image_to_base64(image: Image.Image) -> str:
buffered = BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
return img_str
def get_types(cls_set: List[Type], component: str):
docset = []
types = []
if component == "input":
for cls in cls_set:
doc = inspect.getdoc(cls)
doc_lines = doc.split("\n")
docset.append(doc_lines[1].split(":")[-1])
types.append(doc_lines[1].split(")")[0].split("(")[-1])
else:
for cls in cls_set:
doc = inspect.getdoc(cls)
doc_lines = doc.split("\n")
docset.append(doc_lines[-1].split(":")[-1])
types.append(doc_lines[-1].split(")")[0].split("(")[-1])
return docset, types
routes.get_types = get_types
with open("sdxl_loras.json", "r") as file:
data = json.load(file)
sdxl_loras_raw = [
{
"image": item["image"],
"title": item["title"],
"repo": item["repo"],
"trigger_word": item["trigger_word"],
"weights": item["weights"],
"is_compatible": item["is_compatible"],
"is_pivotal": item.get("is_pivotal", False),
"text_embedding_weights": item.get("text_embedding_weights", None),
"likes": item.get("likes", 0),
"downloads": item.get("downloads", 0),
"is_nc": item.get("is_nc", False)
}
for item in data
]
device = "cuda"
state_dicts = {}
for item in sdxl_loras_raw:
saved_name = hf_hub_download(item["repo"], item["weights"])
if not saved_name.endswith('.safetensors'):
state_dict = torch.load(saved_name)
# state_dict = torch.load(saved_name, map_location=torch.device('cpu'))
else:
state_dict = load_file(saved_name)
state_dicts[item["repo"]] = {
"saved_name": saved_name,
"state_dict": state_dict
}
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
)
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
vae=vae,
torch_dtype=torch.float16,
)
original_pipe = copy.deepcopy(pipe)
pipe.to(device)
last_lora = ""
last_merged = False
last_fused = False
def update_selection(selected_state: gr.SelectData, sdxl_loras):
lora_repo = sdxl_loras[selected_state.index]["repo"]
instance_prompt = sdxl_loras[selected_state.index]["trigger_word"]
new_placeholder = "Type a prompt. This LoRA applies for all prompts, no need for a trigger word" if instance_prompt == "" else "Type a prompt to use your selected LoRA"
weight_name = sdxl_loras[selected_state.index]["weights"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨ {'(non-commercial LoRA, `cc-by-nc`)' if sdxl_loras[selected_state.index]['is_nc'] else '' }"
return (
updated_text,
instance_prompt,
gr.update(placeholder=new_placeholder),
selected_state,
)
def check_selected(selected_state):
if not selected_state:
raise gr.Error("You must select a LoRA dude")
def merge_incompatible_lora(full_path_lora, lora_scale):
for weights_file in [full_path_lora]:
if ";" in weights_file:
weights_file, multiplier = weights_file.split(";")
multiplier = float(multiplier)
else:
multiplier = lora_scale
lora_model, weights_sd = lora.create_network_from_weights(
multiplier,
full_path_lora,
pipe.vae,
pipe.text_encoder,
pipe.unet,
for_inference=True,
)
lora_model.merge_to(
pipe.text_encoder, pipe.unet, weights_sd, torch.float16, "cuda"
)
del weights_sd
del lora_model
gc.collect()
def run_lora(prompt, negative, lora_scale, selected_state, sdxl_loras, progress=gr.Progress(track_tqdm=True)):
global last_lora, last_merged, last_fused, pipe
print("✅ Running LoRAAAAA >>>>>>>>>>>>> >>>>>>>>>>>>>>>>>>>")
# print("prompt: ", prompt)
# print("negative: ", negative)
# print("lora_scale: ", lora_scale)
# print("selected_state: ", selected_state)
print("selected_state index: ", selected_state.index)
if negative == "":
negative = None
if not selected_state:
raise gr.Error("You must select a LoRA")
repo_name = sdxl_loras[selected_state.index]["repo"]
weight_name = sdxl_loras[selected_state.index]["weights"]
full_path_lora = state_dicts[repo_name]["saved_name"]
loaded_state_dict = state_dicts[repo_name]["state_dict"]
cross_attention_kwargs = None
if last_lora != repo_name:
if last_merged:
del pipe
gc.collect()
pipe = copy.deepcopy(original_pipe)
pipe.to(device)
elif (last_fused):
pipe.unfuse_lora()
pipe.unload_lora_weights()
is_compatible = sdxl_loras[selected_state.index]["is_compatible"]
if is_compatible:
pipe.load_lora_weights(loaded_state_dict)
pipe.fuse_lora(lora_scale)
last_fused = True
else:
is_pivotal = sdxl_loras[selected_state.index]["is_pivotal"]
if (is_pivotal):
pipe.load_lora_weights(loaded_state_dict)
pipe.fuse_lora(lora_scale)
last_fused = True
# Add the textual inversion embeddings from pivotal tuning models
text_embedding_name = sdxl_loras[selected_state.index]["text_embedding_weights"]
text_encoders = [pipe.text_encoder, pipe.text_encoder_2]
tokenizers = [pipe.tokenizer, pipe.tokenizer_2]
embedding_path = hf_hub_download(
repo_id=repo_name, filename=text_embedding_name, repo_type="model")
embhandler = TokenEmbeddingsHandler(text_encoders, tokenizers)
embhandler.load_embeddings(embedding_path)
else:
merge_incompatible_lora(full_path_lora, lora_scale)
last_fused = False
last_merged = True
image = pipe(
prompt=prompt,
negative_prompt=negative,
width=512,
height=512,
num_inference_steps=20,
guidance_scale=7.5,
).images[0]
last_lora = repo_name
gc.collect()
print("✅ Returning image >>>>>>>>>>>>> >>>>>>>>>>>>>>>>>>>")
print("image: ", image)
return image, gr.update(visible=True)
def run_lora_light(prompt, negative, lora_scale, selected_index, sdxl_loras, progress=gr.Progress(track_tqdm=True)):
global last_lora, last_merged, last_fused, pipe
print("✅ Running run_lora_light >>>>>>>>>>>>> >>>>>>>>>>>>>>>>>>>")
print("prompt: ", prompt)
print("negative: ", negative)
print("lora_scale: ", lora_scale)
print("selected_state: ", selected_index)
if negative == "":
negative = None
# if not selected_state:
# raise gr.Error("You must select a LoRA")
repo_name = sdxl_loras[selected_index]["repo"]
weight_name = sdxl_loras[selected_index]["weights"]
full_path_lora = state_dicts[repo_name]["saved_name"]
loaded_state_dict = state_dicts[repo_name]["state_dict"]
cross_attention_kwargs = None
if last_lora != repo_name:
if last_merged:
del pipe
gc.collect()
pipe = copy.deepcopy(original_pipe)
pipe.to(device)
elif (last_fused):
pipe.unfuse_lora()
pipe.unload_lora_weights()
is_compatible = sdxl_loras[selected_index]["is_compatible"]
if is_compatible:
pipe.load_lora_weights(loaded_state_dict)
pipe.fuse_lora(lora_scale)
last_fused = True
else:
is_pivotal = sdxl_loras[selected_index]["is_pivotal"]
if (is_pivotal):
pipe.load_lora_weights(loaded_state_dict)
pipe.fuse_lora(lora_scale)
last_fused = True
# Add the textual inversion embeddings from pivotal tuning models
text_embedding_name = sdxl_loras[selected_index]["text_embedding_weights"]
text_encoders = [pipe.text_encoder, pipe.text_encoder_2]
tokenizers = [pipe.tokenizer, pipe.tokenizer_2]
embedding_path = hf_hub_download(
repo_id=repo_name, filename=text_embedding_name, repo_type="model")
embhandler = TokenEmbeddingsHandler(text_encoders, tokenizers)
embhandler.load_embeddings(embedding_path)
else:
merge_incompatible_lora(full_path_lora, lora_scale)
last_fused = False
last_merged = True
image = pipe(
prompt=prompt,
negative_prompt=negative,
width=512,
height=512,
num_inference_steps=20,
guidance_scale=7.5,
).images[0]
last_lora = repo_name
gc.collect()
print("image: ", image)
image_base64 = image_to_base64(image)
return image_base64
def shuffle_gallery(sdxl_loras):
order = "likes"
sorted_gallery = sorted(sdxl_loras, key=lambda x: x.get(order, 0), reverse=True)
return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery
def swap_gallery(order, sdxl_loras):
if(order == "random"):
return shuffle_gallery(sdxl_loras)
else:
sorted_gallery = sorted(sdxl_loras, key=lambda x: x.get(order, 0), reverse=True)
return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery
# App code
def hallo(full_string):
print("✅ Hallo >>>>>>>>>")
print("string: ", full_string)
parts = full_string.split("+")
text_part = parts[0].strip()
number_part = parts[1].strip()
idx_lora = int(number_part)
token_part = parts[2].strip()
if(token_part == MY_TOKEN):
img_result = run_lora_light(prompt=text_part, negative="No naked bodies", lora_scale=0.8, selected_index=idx_lora, sdxl_loras=sdxl_loras_raw)
return img_result
else:
img_result = {"message": "Failed request", "prompt": text_part}
return img_result
def hadet(x):
return f"Hadet, {x}"
with gr.Blocks(css="custom.css") as demo:
gr_sdxl_loras = gr.State(value=sdxl_loras_raw)
# <<<<<<< new additions
t = gr.Textbox()
b = gr.Button("Hallo")
a = gr.Button("Hadet")
o = gr.Textbox()
b.click(hallo, inputs=[t], outputs=[o])
a.click(hadet, inputs=[t], outputs=[o])
# new additions >>>>>>>>>
title = gr.HTML(
"""<h1>Algorithmic Dream Interpreter | Art Generator</h1>""",
elem_id="title",
)
selected_state = gr.State()
print("✅ selected_state: ", selected_state)
with gr.Row():
with gr.Box(elem_id="gallery_box"):
order_gallery = gr.Radio(choices=[
"random", "likes"], value="random", label="Order by", elem_id="order_radio")
gallery = gr.Gallery(
#value=[(item["image"], item["title"]) for item in sdxl_loras],
label="SDXL LoRA Gallery",
allow_preview=False,
columns=4,
elem_id="gallery",
show_share_button=False,
# height=784
height=384
)
with gr.Column():
prompt_title = gr.Markdown(
value="### Click on a LoRA in the gallery to select it",
visible=True,
elem_id="selected_lora",
)
with gr.Row():
prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1,
placeholder="Type a prompt after selecting a LoRA", elem_id="prompt")
button = gr.Button("Run", elem_id="run_button")
with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
community_icon = gr.HTML(community_icon_html)
loading_icon = gr.HTML(loading_icon_html)
share_button = gr.Button(
"Share to community", elem_id="share-btn")
result = gr.Image(
interactive=False, label="Generated Image", elem_id="result-image"
)
with gr.Accordion("Advanced options", open=False):
negative = gr.Textbox(label="Negative Prompt")
weight = gr.Slider(
0, 10, value=0.8, step=0.1, label="LoRA weight")
gallery.select(
fn=update_selection,
inputs=[gr_sdxl_loras],
outputs=[prompt_title, prompt, prompt,
selected_state],
queue=False,
show_progress=False
)
order_gallery.change(
fn=swap_gallery,
inputs=[order_gallery, gr_sdxl_loras],
outputs=[gallery, gr_sdxl_loras],
queue=False
)
button.click(
fn=check_selected,
inputs=[selected_state],
queue=False,
show_progress=False
).success(
fn=run_lora,
inputs=[prompt, negative, weight, selected_state, gr_sdxl_loras],
outputs=[result, share_group],
)
# share_button.click(None, [], [], _js=share_js)
demo.load(fn=shuffle_gallery, inputs=[gr_sdxl_loras], outputs=[
gallery, gr_sdxl_loras], queue=False)
# <<<<<<< new additions
ifa = gr.Interface(lambda: None, inputs=[t], outputs=[o])
demo.input_components = ifa.input_components
demo.output_components = ifa.output_components
demo.examples = None
demo.predict_durations = []
# new additions >>>>>>>>>
# demo.queue(max_size=20)
demo.launch()