|
import torch |
|
|
|
def tokenize_prompt(tokenizer, prompt): |
|
text_inputs = tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
return text_input_ids |
|
|
|
|
|
|
|
def encode_prompt(text_encoders, tokenizers, prompt, text_input_ids_list=None): |
|
prompt_embeds_list = [] |
|
|
|
for i, text_encoder in enumerate(text_encoders): |
|
if tokenizers is not None: |
|
tokenizer = tokenizers[i] |
|
text_input_ids = tokenize_prompt(tokenizer, prompt) |
|
else: |
|
assert text_input_ids_list is not None |
|
text_input_ids = text_input_ids_list[i] |
|
|
|
prompt_embeds = text_encoder( |
|
text_input_ids.to(text_encoder.device), |
|
output_hidden_states=True, |
|
) |
|
|
|
|
|
pooled_prompt_embeds = prompt_embeds[0] |
|
prompt_embeds = prompt_embeds.hidden_states[-2] |
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1) |
|
prompt_embeds_list.append(prompt_embeds) |
|
|
|
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) |
|
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1) |
|
return prompt_embeds, pooled_prompt_embeds |
|
|
|
|
|
def add_tokens(tokenizers, tokens, text_encoders): |
|
new_token_indices = {} |
|
for idx, tokenizer in enumerate(tokenizers): |
|
for token in tokens: |
|
num_added_tokens = tokenizer.add_tokens(token) |
|
if num_added_tokens == 0: |
|
raise ValueError( |
|
f"The tokenizer already contains the token {token}. Please pass a different" |
|
" `placeholder_token` that is not already in the tokenizer." |
|
) |
|
|
|
new_token_indices[f"{idx}_{token}"] = num_added_tokens |
|
|
|
text_encoders[idx].resize_token_embeddings(len(tokenizer), pad_to_multiple_of=128) |
|
|
|
return new_token_indices |
|
|
|
|
|
def patch_embedding_forward(embedding_layer, new_tokens, new_embeddings): |
|
|
|
def new_forward(input): |
|
embedded_text = torch.nn.functional.embedding( |
|
input, embedding_layer.weight, embedding_layer.padding_idx, embedding_layer.max_norm, |
|
embedding_layer.norm_type, embedding_layer.scale_grad_by_freq, embedding_layer.sparse) |
|
|
|
replace_indices = (input == new_tokens) |
|
|
|
if torch.count_nonzero(replace_indices) > 0: |
|
embedded_text[replace_indices] = new_embeddings |
|
|
|
return embedded_text |
|
|
|
embedding_layer.forward = new_forward |