|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import contextlib |
|
import time |
|
import gc |
|
import logging |
|
import math |
|
import os |
|
import random |
|
import jsonlines |
|
import functools |
|
import shutil |
|
import pyrallis |
|
import itertools |
|
from pathlib import Path |
|
from collections import namedtuple, OrderedDict |
|
|
|
import accelerate |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
import transformers |
|
from accelerate import Accelerator |
|
from accelerate.logging import get_logger |
|
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed |
|
from datasets import load_dataset |
|
from packaging import version |
|
from PIL import Image |
|
from data.data_config import DataConfig |
|
from basicsr.utils.degradation_pipeline import RealESRGANDegradation |
|
from losses.loss_config import LossesConfig |
|
from losses.losses import * |
|
from torchvision import transforms |
|
from torchvision.transforms.functional import crop |
|
from tqdm.auto import tqdm |
|
from transformers import ( |
|
AutoTokenizer, |
|
PretrainedConfig, |
|
CLIPImageProcessor, CLIPVisionModelWithProjection, |
|
AutoImageProcessor, AutoModel) |
|
|
|
import diffusers |
|
from diffusers import ( |
|
AutoencoderKL, |
|
AutoencoderTiny, |
|
DDPMScheduler, |
|
StableDiffusionXLPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.optimization import get_scheduler |
|
from diffusers.utils import check_min_version, is_wandb_available, make_image_grid |
|
from diffusers.utils.import_utils import is_xformers_available |
|
from diffusers.utils.torch_utils import is_compiled_module |
|
|
|
from schedulers.lcm_single_step_scheduler import LCMSingleStepScheduler |
|
from utils.train_utils import ( |
|
seperate_ip_params_from_unet, |
|
import_model_class_from_model_name_or_path, |
|
tensor_to_pil, |
|
get_train_dataset, prepare_train_dataset, collate_fn, |
|
encode_prompt, importance_sampling_fn, extract_into_tensor |
|
) |
|
from module.ip_adapter.resampler import Resampler |
|
from module.ip_adapter.attention_processor import init_attn_proc |
|
from module.ip_adapter.utils import init_adapter_in_unet, prepare_training_image_embeds |
|
|
|
|
|
if is_wandb_available(): |
|
import wandb |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
def log_validation(unet, vae, text_encoder, text_encoder_2, tokenizer, tokenizer_2, |
|
scheduler, image_encoder, image_processor, deg_pipeline, |
|
args, accelerator, weight_dtype, step, lq_img=None, gt_img=None, is_final_validation=False, log_local=False): |
|
logger.info("Running validation... ") |
|
|
|
image_logs = [] |
|
|
|
lq = [Image.open(lq_example) for lq_example in args.validation_image] |
|
|
|
pipe = StableDiffusionXLPipeline( |
|
vae, text_encoder, text_encoder_2, tokenizer, tokenizer_2, |
|
unet, scheduler, image_encoder, image_processor, |
|
).to(accelerator.device) |
|
|
|
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) |
|
image = pipe( |
|
prompt=[""]*len(lq), |
|
ip_adapter_image=[lq], |
|
num_inference_steps=20, |
|
generator=generator, |
|
guidance_scale=5.0, |
|
height=args.resolution, |
|
width=args.resolution, |
|
).images |
|
|
|
if log_local: |
|
for i, img in enumerate(tensor_to_pil(lq_img)): |
|
img.save(f"./lq_{i}.png") |
|
for i, img in enumerate(tensor_to_pil(gt_img)): |
|
img.save(f"./gt_{i}.png") |
|
for i, img in enumerate(image): |
|
img.save(f"./lq_IPA_{i}.png") |
|
return |
|
|
|
tracker_key = "test" if is_final_validation else "validation" |
|
for tracker in accelerator.trackers: |
|
if tracker.name == "tensorboard": |
|
images = [np.asarray(pil_img) for pil_img in image] |
|
images = np.stack(images, axis=0) |
|
if lq_img is not None and gt_img is not None: |
|
input_lq = lq_img.detach().cpu() |
|
input_lq = np.asarray(input_lq.add(1).div(2).clamp(0, 1)) |
|
input_gt = gt_img.detach().cpu() |
|
input_gt = np.asarray(input_gt.add(1).div(2).clamp(0, 1)) |
|
tracker.writer.add_images("lq", input_lq[0], step, dataformats="CHW") |
|
tracker.writer.add_images("gt", input_gt[0], step, dataformats="CHW") |
|
tracker.writer.add_images("rec", images, step, dataformats="NHWC") |
|
elif tracker.name == "wandb": |
|
raise NotImplementedError("Wandb logging not implemented for validation.") |
|
formatted_images = [] |
|
|
|
for log in image_logs: |
|
images = log["images"] |
|
validation_prompt = log["validation_prompt"] |
|
validation_image = log["validation_image"] |
|
|
|
formatted_images.append(wandb.Image(validation_image, caption="Controlnet conditioning")) |
|
|
|
for image in images: |
|
image = wandb.Image(image, caption=validation_prompt) |
|
formatted_images.append(image) |
|
|
|
tracker.log({tracker_key: formatted_images}) |
|
else: |
|
logger.warning(f"image logging not implemented for {tracker.name}") |
|
|
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
return image_logs |
|
|
|
|
|
def parse_args(input_args=None): |
|
parser = argparse.ArgumentParser(description="InstantIR stage-1 training.") |
|
parser.add_argument( |
|
"--pretrained_model_name_or_path", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="Path to pretrained model or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--pretrained_vae_model_name_or_path", |
|
type=str, |
|
default=None, |
|
help="Path to an improved VAE to stabilize training. For more details check out: https://github.com/huggingface/diffusers/pull/4038.", |
|
) |
|
parser.add_argument( |
|
"--feature_extractor_path", |
|
type=str, |
|
default=None, |
|
help="Path to image encoder for IP-Adapters or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--pretrained_adapter_model_path", |
|
type=str, |
|
default=None, |
|
help="Path to IP-Adapter models or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--adapter_tokens", |
|
type=int, |
|
default=64, |
|
help="Number of tokens to use in IP-adapter cross attention mechanism.", |
|
) |
|
parser.add_argument( |
|
"--use_clip_encoder", |
|
action="store_true", |
|
help="Whether or not to use DINO as image encoder, else CLIP encoder.", |
|
) |
|
parser.add_argument( |
|
"--image_encoder_hidden_feature", |
|
action="store_true", |
|
help="Whether or not to use the penultimate hidden states as image embeddings.", |
|
) |
|
parser.add_argument( |
|
"--losses_config_path", |
|
type=str, |
|
required=True, |
|
default='config_files/losses.yaml' |
|
help=("A yaml file containing losses to use and their weights."), |
|
) |
|
parser.add_argument( |
|
"--data_config_path", |
|
type=str, |
|
default='config_files/IR_dataset.yaml', |
|
help=("A folder containing the training data. "), |
|
) |
|
parser.add_argument( |
|
"--variant", |
|
type=str, |
|
default=None, |
|
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", |
|
) |
|
parser.add_argument( |
|
"--revision", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="Revision of pretrained model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--tokenizer_name", |
|
type=str, |
|
default=None, |
|
help="Pretrained tokenizer name or path if not the same as model_name", |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
type=str, |
|
default="stage1_model", |
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
) |
|
parser.add_argument( |
|
"--cache_dir", |
|
type=str, |
|
default=None, |
|
help="The directory where the downloaded models and datasets will be stored.", |
|
) |
|
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.") |
|
parser.add_argument( |
|
"--resolution", |
|
type=int, |
|
default=512, |
|
help=( |
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this" |
|
" resolution" |
|
), |
|
) |
|
parser.add_argument( |
|
"--crops_coords_top_left_h", |
|
type=int, |
|
default=0, |
|
help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."), |
|
) |
|
parser.add_argument( |
|
"--crops_coords_top_left_w", |
|
type=int, |
|
default=0, |
|
help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."), |
|
) |
|
parser.add_argument( |
|
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." |
|
) |
|
parser.add_argument("--num_train_epochs", type=int, default=1) |
|
parser.add_argument( |
|
"--max_train_steps", |
|
type=int, |
|
default=None, |
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
|
) |
|
parser.add_argument( |
|
"--checkpointing_steps", |
|
type=int, |
|
default=2000, |
|
help=( |
|
"Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. " |
|
"In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference." |
|
"Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components." |
|
"See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step" |
|
"instructions." |
|
), |
|
) |
|
parser.add_argument( |
|
"--checkpoints_total_limit", |
|
type=int, |
|
default=5, |
|
help=("Max number of checkpoints to store."), |
|
) |
|
parser.add_argument( |
|
"--resume_from_checkpoint", |
|
type=str, |
|
default=None, |
|
help=( |
|
"Whether training should be resumed from a previous checkpoint. Use a path saved by" |
|
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' |
|
), |
|
) |
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
parser.add_argument( |
|
"--gradient_checkpointing", |
|
action="store_true", |
|
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", |
|
) |
|
parser.add_argument( |
|
"--save_only_adapter", |
|
action="store_true", |
|
help="Only save extra adapter to save space.", |
|
) |
|
parser.add_argument( |
|
"--importance_sampling", |
|
action="store_true", |
|
help="Whether or not to use importance sampling.", |
|
) |
|
parser.add_argument( |
|
"--learning_rate", |
|
type=float, |
|
default=1e-4, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument( |
|
"--scale_lr", |
|
action="store_true", |
|
default=False, |
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", |
|
) |
|
parser.add_argument( |
|
"--lr_scheduler", |
|
type=str, |
|
default="constant", |
|
help=( |
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' |
|
' "constant", "constant_with_warmup"]' |
|
), |
|
) |
|
parser.add_argument( |
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." |
|
) |
|
parser.add_argument( |
|
"--lr_num_cycles", |
|
type=int, |
|
default=1, |
|
help="Number of hard resets of the lr in cosine_with_restarts scheduler.", |
|
) |
|
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") |
|
parser.add_argument( |
|
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." |
|
) |
|
parser.add_argument( |
|
"--dataloader_num_workers", |
|
type=int, |
|
default=0, |
|
help=( |
|
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." |
|
), |
|
) |
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") |
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") |
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") |
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") |
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") |
|
parser.add_argument( |
|
"--hub_model_id", |
|
type=str, |
|
default=None, |
|
help="The name of the repository to keep in sync with the local `output_dir`.", |
|
) |
|
parser.add_argument( |
|
"--logging_dir", |
|
type=str, |
|
default="logs", |
|
help=( |
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" |
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." |
|
), |
|
) |
|
parser.add_argument( |
|
"--allow_tf32", |
|
action="store_true", |
|
help=( |
|
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" |
|
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" |
|
), |
|
) |
|
parser.add_argument( |
|
"--report_to", |
|
type=str, |
|
default="tensorboard", |
|
help=( |
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' |
|
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' |
|
), |
|
) |
|
parser.add_argument( |
|
"--mixed_precision", |
|
type=str, |
|
default=None, |
|
choices=["no", "fp16", "bf16"], |
|
help=( |
|
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" |
|
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" |
|
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." |
|
), |
|
) |
|
parser.add_argument( |
|
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." |
|
) |
|
parser.add_argument( |
|
"--set_grads_to_none", |
|
action="store_true", |
|
help=( |
|
"Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain" |
|
" behaviors, so disable this argument if it causes any problems. More info:" |
|
" https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html" |
|
), |
|
) |
|
parser.add_argument( |
|
"--dataset_name", |
|
type=str, |
|
default=None, |
|
help=( |
|
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," |
|
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," |
|
" or to a folder containing files that 🤗 Datasets can understand." |
|
), |
|
) |
|
parser.add_argument( |
|
"--dataset_config_name", |
|
type=str, |
|
default=None, |
|
help="The config of the Dataset, leave as None if there's only one config.", |
|
) |
|
parser.add_argument( |
|
"--train_data_dir", |
|
type=str, |
|
default=None, |
|
help=( |
|
"A folder containing the training data. Folder contents must follow the structure described in" |
|
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" |
|
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified." |
|
), |
|
) |
|
parser.add_argument( |
|
"--image_column", type=str, default="image", help="The column of the dataset containing the target image." |
|
) |
|
parser.add_argument( |
|
"--conditioning_image_column", |
|
type=str, |
|
default="conditioning_image", |
|
help="The column of the dataset containing the controlnet conditioning image.", |
|
) |
|
parser.add_argument( |
|
"--caption_column", |
|
type=str, |
|
default="text", |
|
help="The column of the dataset containing a caption or a list of captions.", |
|
) |
|
parser.add_argument( |
|
"--max_train_samples", |
|
type=int, |
|
default=None, |
|
help=( |
|
"For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
), |
|
) |
|
parser.add_argument( |
|
"--text_drop_rate", |
|
type=float, |
|
default=0.05, |
|
help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).", |
|
) |
|
parser.add_argument( |
|
"--image_drop_rate", |
|
type=float, |
|
default=0.05, |
|
help="Proportion of IP-Adapter inputs to be dropped. Defaults to 0 (no drop-out).", |
|
) |
|
parser.add_argument( |
|
"--cond_drop_rate", |
|
type=float, |
|
default=0.05, |
|
help="Proportion of all conditions to be dropped. Defaults to 0 (no drop-out).", |
|
) |
|
parser.add_argument( |
|
"--sanity_check", |
|
action="store_true", |
|
help=( |
|
"sanity check" |
|
), |
|
) |
|
parser.add_argument( |
|
"--validation_prompt", |
|
type=str, |
|
default=None, |
|
nargs="+", |
|
help=( |
|
"A set of prompts evaluated every `--validation_steps` and logged to `--report_to`." |
|
" Provide either a matching number of `--validation_image`s, a single `--validation_image`" |
|
" to be used with all prompts, or a single prompt that will be used with all `--validation_image`s." |
|
), |
|
) |
|
parser.add_argument( |
|
"--validation_image", |
|
type=str, |
|
default=None, |
|
nargs="+", |
|
help=( |
|
"A set of paths to the controlnet conditioning image be evaluated every `--validation_steps`" |
|
" and logged to `--report_to`. Provide either a matching number of `--validation_prompt`s, a" |
|
" a single `--validation_prompt` to be used with all `--validation_image`s, or a single" |
|
" `--validation_image` that will be used with all `--validation_prompt`s." |
|
), |
|
) |
|
parser.add_argument( |
|
"--num_validation_images", |
|
type=int, |
|
default=4, |
|
help="Number of images to be generated for each `--validation_image`, `--validation_prompt` pair", |
|
) |
|
parser.add_argument( |
|
"--validation_steps", |
|
type=int, |
|
default=3000, |
|
help=( |
|
"Run validation every X steps. Validation consists of running the prompt" |
|
" `args.validation_prompt` multiple times: `args.num_validation_images`" |
|
" and logging the images." |
|
), |
|
) |
|
parser.add_argument( |
|
"--tracker_project_name", |
|
type=str, |
|
default="instantir_stage1", |
|
help=( |
|
"The `project_name` argument passed to Accelerator.init_trackers for" |
|
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator" |
|
), |
|
) |
|
|
|
if input_args is not None: |
|
args = parser.parse_args(input_args) |
|
else: |
|
args = parser.parse_args() |
|
|
|
|
|
|
|
|
|
if args.dataset_name is not None and args.train_data_dir is not None: |
|
raise ValueError("Specify only one of `--dataset_name` or `--train_data_dir`") |
|
|
|
if args.text_drop_rate < 0 or args.text_drop_rate > 1: |
|
raise ValueError("`--text_drop_rate` must be in the range [0, 1].") |
|
|
|
if args.validation_prompt is not None and args.validation_image is None: |
|
raise ValueError("`--validation_image` must be set if `--validation_prompt` is set") |
|
|
|
if args.validation_prompt is None and args.validation_image is not None: |
|
raise ValueError("`--validation_prompt` must be set if `--validation_image` is set") |
|
|
|
if ( |
|
args.validation_image is not None |
|
and args.validation_prompt is not None |
|
and len(args.validation_image) != 1 |
|
and len(args.validation_prompt) != 1 |
|
and len(args.validation_image) != len(args.validation_prompt) |
|
): |
|
raise ValueError( |
|
"Must provide either 1 `--validation_image`, 1 `--validation_prompt`," |
|
" or the same number of `--validation_prompt`s and `--validation_image`s" |
|
) |
|
|
|
if args.resolution % 8 != 0: |
|
raise ValueError( |
|
"`--resolution` must be divisible by 8 for consistently sized encoded images between the VAE and the controlnet encoder." |
|
) |
|
|
|
return args |
|
|
|
|
|
def main(args): |
|
if args.report_to == "wandb" and args.hub_token is not None: |
|
raise ValueError( |
|
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." |
|
" Please use `huggingface-cli login` to authenticate with the Hub." |
|
) |
|
|
|
logging_dir = Path(args.output_dir, args.logging_dir) |
|
|
|
if torch.backends.mps.is_available() and args.mixed_precision == "bf16": |
|
|
|
raise ValueError( |
|
"Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead." |
|
) |
|
|
|
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) |
|
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True) |
|
accelerator = Accelerator( |
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
mixed_precision=args.mixed_precision, |
|
log_with=args.report_to, |
|
project_config=accelerator_project_config, |
|
|
|
) |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
logger.info(accelerator.state, main_process_only=False) |
|
if accelerator.is_local_main_process: |
|
transformers.utils.logging.set_verbosity_warning() |
|
diffusers.utils.logging.set_verbosity_info() |
|
else: |
|
transformers.utils.logging.set_verbosity_error() |
|
diffusers.utils.logging.set_verbosity_error() |
|
|
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
|
|
if accelerator.is_main_process: |
|
if args.output_dir is not None: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
|
|
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") |
|
|
|
list_of_candidates = np.arange(noise_scheduler.config.num_train_timesteps, dtype='float64') |
|
prob_dist = importance_sampling_fn(list_of_candidates, noise_scheduler.config.num_train_timesteps, 0.5) |
|
importance_ratio = prob_dist / prob_dist.sum() * noise_scheduler.config.num_train_timesteps |
|
importance_ratio = torch.from_numpy(importance_ratio.copy()).float() |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="tokenizer", |
|
revision=args.revision, |
|
use_fast=False, |
|
) |
|
tokenizer_2 = AutoTokenizer.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="tokenizer_2", |
|
revision=args.revision, |
|
use_fast=False, |
|
) |
|
|
|
|
|
text_encoder_cls_one = import_model_class_from_model_name_or_path( |
|
args.pretrained_model_name_or_path, args.revision |
|
) |
|
text_encoder_cls_two = import_model_class_from_model_name_or_path( |
|
args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2" |
|
) |
|
text_encoder = text_encoder_cls_one.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant |
|
) |
|
text_encoder_2 = text_encoder_cls_two.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant |
|
) |
|
if args.use_clip_encoder: |
|
image_processor = CLIPImageProcessor() |
|
image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.feature_extractor_path) |
|
else: |
|
image_processor = AutoImageProcessor.from_pretrained(args.feature_extractor_path) |
|
image_encoder = AutoModel.from_pretrained(args.feature_extractor_path) |
|
|
|
|
|
vae_path = ( |
|
args.pretrained_model_name_or_path |
|
if args.pretrained_vae_model_name_or_path is None |
|
else args.pretrained_vae_model_name_or_path |
|
) |
|
vae = AutoencoderKL.from_pretrained( |
|
vae_path, |
|
subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None, |
|
revision=args.revision, |
|
variant=args.variant, |
|
) |
|
|
|
|
|
unet = UNet2DConditionModel.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="unet", |
|
revision=args.revision, |
|
variant=args.variant |
|
) |
|
|
|
pipe = StableDiffusionXLPipeline.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
unet=unet, |
|
text_encoder=text_encoder, |
|
text_encoder_2=text_encoder_2, |
|
vae=vae, |
|
tokenizer=tokenizer, |
|
tokenizer_2=tokenizer_2, |
|
variant=args.variant |
|
) |
|
|
|
|
|
image_proj_model = Resampler( |
|
dim=1280, |
|
depth=4, |
|
dim_head=64, |
|
heads=20, |
|
num_queries=args.adapter_tokens, |
|
embedding_dim=image_encoder.config.hidden_size, |
|
output_dim=unet.config.cross_attention_dim, |
|
ff_mult=4 |
|
) |
|
|
|
init_adapter_in_unet( |
|
unet, |
|
image_proj_model, |
|
os.path.join(args.pretrained_adapter_model_path, 'adapter_ckpt.pt'), |
|
adapter_tokens=args.adapter_tokens, |
|
) |
|
|
|
|
|
vae.requires_grad_(False) |
|
text_encoder.requires_grad_(False) |
|
text_encoder_2.requires_grad_(False) |
|
unet.requires_grad_(False) |
|
image_encoder.requires_grad_(False) |
|
|
|
def unwrap_model(model): |
|
model = accelerator.unwrap_model(model) |
|
model = model._orig_mod if is_compiled_module(model) else model |
|
return model |
|
|
|
|
|
if args.save_only_adapter: |
|
|
|
def save_model_hook(models, weights, output_dir): |
|
if accelerator.is_main_process: |
|
for model in models: |
|
if isinstance(model, type(unwrap_model(unet))): |
|
adapter_state_dict = OrderedDict() |
|
adapter_state_dict["image_proj"] = model.encoder_hid_proj.image_projection_layers[0].state_dict() |
|
adapter_state_dict["ip_adapter"] = torch.nn.ModuleList(model.attn_processors.values()).state_dict() |
|
torch.save(adapter_state_dict, os.path.join(output_dir, "adapter_ckpt.pt")) |
|
|
|
weights.pop() |
|
|
|
def load_model_hook(models, input_dir): |
|
|
|
while len(models) > 0: |
|
|
|
model = models.pop() |
|
|
|
if isinstance(model, type(accelerator.unwrap_model(unet))): |
|
adapter_state_dict = torch.load(os.path.join(input_dir, "adapter_ckpt.pt"), map_location="cpu") |
|
if list(adapter_state_dict.keys()) != ["image_proj", "ip_adapter"]: |
|
from module.ip_adapter.utils import revise_state_dict |
|
adapter_state_dict = revise_state_dict(adapter_state_dict) |
|
model.encoder_hid_proj.image_projection_layers[0].load_state_dict(adapter_state_dict["image_proj"], strict=True) |
|
missing, unexpected = torch.nn.ModuleList(model.attn_processors.values()).load_state_dict(adapter_state_dict["ip_adapter"], strict=False) |
|
if len(unexpected) > 0: |
|
raise ValueError(f"Unexpected keys: {unexpected}") |
|
if len(missing) > 0: |
|
for mk in missing: |
|
if "ln" not in mk: |
|
raise ValueError(f"Missing keys: {missing}") |
|
|
|
accelerator.register_save_state_pre_hook(save_model_hook) |
|
accelerator.register_load_state_pre_hook(load_model_hook) |
|
|
|
|
|
|
|
weight_dtype = torch.float32 |
|
if accelerator.mixed_precision == "fp16": |
|
weight_dtype = torch.float16 |
|
elif accelerator.mixed_precision == "bf16": |
|
weight_dtype = torch.bfloat16 |
|
|
|
if args.enable_xformers_memory_efficient_attention: |
|
if is_xformers_available(): |
|
import xformers |
|
|
|
xformers_version = version.parse(xformers.__version__) |
|
if xformers_version == version.parse("0.0.16"): |
|
logger.warning( |
|
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." |
|
) |
|
unet.enable_xformers_memory_efficient_attention() |
|
else: |
|
raise ValueError("xformers is not available. Make sure it is installed correctly") |
|
|
|
if args.gradient_checkpointing: |
|
unet.enable_gradient_checkpointing() |
|
vae.enable_gradient_checkpointing() |
|
|
|
|
|
|
|
if args.allow_tf32: |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
if args.scale_lr: |
|
args.learning_rate = ( |
|
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes |
|
) |
|
|
|
|
|
if args.use_8bit_adam: |
|
try: |
|
import bitsandbytes as bnb |
|
except ImportError: |
|
raise ImportError( |
|
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." |
|
) |
|
|
|
optimizer_class = bnb.optim.AdamW8bit |
|
else: |
|
optimizer_class = torch.optim.AdamW |
|
|
|
|
|
ip_params, non_ip_params = seperate_ip_params_from_unet(unet) |
|
params_to_optimize = ip_params |
|
optimizer = optimizer_class( |
|
params_to_optimize, |
|
lr=args.learning_rate, |
|
betas=(args.adam_beta1, args.adam_beta2), |
|
weight_decay=args.adam_weight_decay, |
|
eps=args.adam_epsilon, |
|
) |
|
|
|
|
|
losses_configs: LossesConfig = pyrallis.load(LossesConfig, open(args.losses_config_path, "r")) |
|
diffusion_losses = list() |
|
for loss_config in losses_configs.diffusion_losses: |
|
logger.info(f"Loading diffusion loss: {loss_config.name}") |
|
loss = namedtuple("loss", ["loss", "weight"]) |
|
loss_class = eval(loss_config.name) |
|
diffusion_losses.append(loss(loss_class(visualize_every_k=loss_config.visualize_every_k, |
|
dtype=weight_dtype, |
|
accelerator=accelerator, |
|
**loss_config.init_params), weight=loss_config.weight)) |
|
|
|
|
|
def compute_time_ids(original_size, crops_coords_top_left): |
|
|
|
target_size = (args.resolution, args.resolution) |
|
add_time_ids = list(original_size + crops_coords_top_left + target_size) |
|
add_time_ids = torch.tensor([add_time_ids]) |
|
add_time_ids = add_time_ids.to(accelerator.device, dtype=weight_dtype) |
|
return add_time_ids |
|
|
|
|
|
@torch.no_grad() |
|
def compute_embeddings(batch, text_encoders, tokenizers, drop_idx=None, is_train=True): |
|
prompt_batch = batch[args.caption_column] |
|
if drop_idx is not None: |
|
for i in range(len(prompt_batch)): |
|
prompt_batch[i] = "" if drop_idx[i] else prompt_batch[i] |
|
prompt_embeds, pooled_prompt_embeds = encode_prompt( |
|
prompt_batch, text_encoders, tokenizers, is_train |
|
) |
|
|
|
add_time_ids = torch.cat( |
|
[compute_time_ids(s, c) for s, c in zip(batch["original_sizes"], batch["crop_top_lefts"])] |
|
) |
|
|
|
prompt_embeds = prompt_embeds.to(accelerator.device) |
|
pooled_prompt_embeds = pooled_prompt_embeds.to(accelerator.device) |
|
add_time_ids = add_time_ids.to(accelerator.device, dtype=prompt_embeds.dtype) |
|
sdxl_added_cond_kwargs = {"text_embeds": pooled_prompt_embeds, "time_ids": add_time_ids} |
|
|
|
return prompt_embeds, sdxl_added_cond_kwargs |
|
|
|
|
|
@torch.no_grad() |
|
def convert_to_latent(pixels): |
|
model_input = vae.encode(pixels).latent_dist.sample() |
|
model_input = model_input * vae.config.scaling_factor |
|
if args.pretrained_vae_model_name_or_path is None: |
|
model_input = model_input.to(weight_dtype) |
|
return model_input |
|
|
|
|
|
deg_pipeline = RealESRGANDegradation(device=accelerator.device, resolution=args.resolution) |
|
compute_embeddings_fn = functools.partial( |
|
compute_embeddings, |
|
text_encoders=[text_encoder, text_encoder_2], |
|
tokenizers=[tokenizer, tokenizer_2], |
|
is_train=True, |
|
) |
|
|
|
datasets = [] |
|
datasets_name = [] |
|
datasets_weights = [] |
|
if args.data_config_path is not None: |
|
data_config: DataConfig = pyrallis.load(DataConfig, open(args.data_config_path, "r")) |
|
for single_dataset in data_config.datasets: |
|
datasets_weights.append(single_dataset.dataset_weight) |
|
datasets_name.append(single_dataset.dataset_folder) |
|
dataset_dir = os.path.join(args.train_data_dir, single_dataset.dataset_folder) |
|
image_dataset = get_train_dataset(dataset_dir, dataset_dir, args, accelerator) |
|
image_dataset = prepare_train_dataset(image_dataset, accelerator, deg_pipeline) |
|
datasets.append(image_dataset) |
|
|
|
if data_config.val_dataset is not None: |
|
val_dataset = get_train_dataset(dataset_name, dataset_dir, args, accelerator) |
|
logger.info(f"Datasets mixing: {list(zip(datasets_name, datasets_weights))}") |
|
|
|
|
|
sampler_train = None |
|
if len(datasets) == 1: |
|
train_dataset = datasets[0] |
|
else: |
|
|
|
train_dataset = torch.utils.data.ConcatDataset(datasets) |
|
dataset_weights = [] |
|
for single_dataset, single_weight in zip(datasets, datasets_weights): |
|
dataset_weights.extend([len(train_dataset) / len(single_dataset) * single_weight] * len(single_dataset)) |
|
sampler_train = torch.utils.data.WeightedRandomSampler( |
|
weights=dataset_weights, |
|
num_samples=len(dataset_weights) |
|
) |
|
|
|
train_dataloader = torch.utils.data.DataLoader( |
|
train_dataset, |
|
batch_size=args.train_batch_size, |
|
sampler=sampler_train, |
|
shuffle=True if sampler_train is None else False, |
|
collate_fn=collate_fn, |
|
num_workers=args.dataloader_num_workers |
|
) |
|
|
|
|
|
|
|
if accelerator.is_main_process: |
|
tracker_config = dict(vars(args)) |
|
|
|
|
|
tracker_config.pop("validation_prompt") |
|
tracker_config.pop("validation_image") |
|
|
|
accelerator.init_trackers(args.tracker_project_name, config=tracker_config) |
|
|
|
|
|
overrode_max_train_steps = False |
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if args.max_train_steps is None: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
overrode_max_train_steps = True |
|
|
|
lr_scheduler = get_scheduler( |
|
args.lr_scheduler, |
|
optimizer=optimizer, |
|
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, |
|
num_training_steps=args.max_train_steps, |
|
num_cycles=args.lr_num_cycles, |
|
power=args.lr_power, |
|
) |
|
|
|
|
|
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
unet, optimizer, train_dataloader, lr_scheduler |
|
) |
|
|
|
|
|
if args.pretrained_vae_model_name_or_path is None: |
|
|
|
vae.to(accelerator.device, dtype=torch.float32) |
|
else: |
|
vae.to(accelerator.device, dtype=weight_dtype) |
|
text_encoder.to(accelerator.device, dtype=weight_dtype) |
|
text_encoder_2.to(accelerator.device, dtype=weight_dtype) |
|
image_encoder.to(accelerator.device, dtype=weight_dtype) |
|
importance_ratio = importance_ratio.to(accelerator.device) |
|
for non_ip_param in non_ip_params: |
|
non_ip_param.data = non_ip_param.data.to(dtype=weight_dtype) |
|
for ip_param in ip_params: |
|
ip_param.requires_grad_(True) |
|
unet.to(accelerator.device) |
|
|
|
|
|
for n, p in unet.named_parameters(): |
|
if p.requires_grad: assert p.dtype == torch.float32, n |
|
else: assert p.dtype == weight_dtype, n |
|
if args.sanity_check: |
|
if args.resume_from_checkpoint: |
|
if args.resume_from_checkpoint != "latest": |
|
path = os.path.basename(args.resume_from_checkpoint) |
|
else: |
|
|
|
dirs = os.listdir(args.output_dir) |
|
dirs = [d for d in dirs if d.startswith("checkpoint")] |
|
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) |
|
path = dirs[-1] if len(dirs) > 0 else None |
|
|
|
if path is None: |
|
accelerator.print( |
|
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." |
|
) |
|
args.resume_from_checkpoint = None |
|
initial_global_step = 0 |
|
else: |
|
accelerator.print(f"Resuming from checkpoint {path}") |
|
accelerator.load_state(os.path.join(args.output_dir, path)) |
|
|
|
|
|
batch = next(iter(train_dataloader)) |
|
lq_img, gt_img = deg_pipeline(batch["images"], (batch["kernel"], batch["kernel2"], batch["sinc_kernel"])) |
|
images_log = log_validation( |
|
unwrap_model(unet), vae, text_encoder, text_encoder_2, tokenizer, tokenizer_2, |
|
noise_scheduler, image_encoder, image_processor, deg_pipeline, |
|
args, accelerator, weight_dtype, step=0, lq_img=lq_img, gt_img=gt_img, is_final_validation=False, log_local=True |
|
) |
|
exit() |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if overrode_max_train_steps: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
|
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len(train_dataset)}") |
|
logger.info(f" Num batches each epoch = {len(train_dataloader)}") |
|
logger.info(f" Num Epochs = {args.num_train_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") |
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") |
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") |
|
logger.info(f" Optimization steps per epoch = {num_update_steps_per_epoch}") |
|
logger.info(f" Total optimization steps = {args.max_train_steps}") |
|
global_step = 0 |
|
first_epoch = 0 |
|
|
|
|
|
if args.resume_from_checkpoint: |
|
if args.resume_from_checkpoint != "latest": |
|
path = os.path.basename(args.resume_from_checkpoint) |
|
else: |
|
|
|
dirs = os.listdir(args.output_dir) |
|
dirs = [d for d in dirs if d.startswith("checkpoint")] |
|
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) |
|
path = dirs[-1] if len(dirs) > 0 else None |
|
|
|
if path is None: |
|
accelerator.print( |
|
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." |
|
) |
|
args.resume_from_checkpoint = None |
|
initial_global_step = 0 |
|
else: |
|
accelerator.print(f"Resuming from checkpoint {path}") |
|
accelerator.load_state(os.path.join(args.output_dir, path)) |
|
global_step = int(path.split("-")[1]) |
|
|
|
initial_global_step = global_step |
|
first_epoch = global_step // num_update_steps_per_epoch |
|
else: |
|
initial_global_step = 0 |
|
|
|
progress_bar = tqdm( |
|
range(0, args.max_train_steps), |
|
initial=initial_global_step, |
|
desc="Steps", |
|
|
|
disable=not accelerator.is_local_main_process, |
|
) |
|
|
|
trainable_models = [unet] |
|
|
|
if args.gradient_checkpointing: |
|
checkpoint_models = [] |
|
else: |
|
checkpoint_models = [] |
|
|
|
image_logs = None |
|
tic = time.time() |
|
for epoch in range(first_epoch, args.num_train_epochs): |
|
for step, batch in enumerate(train_dataloader): |
|
toc = time.time() |
|
io_time = toc - tic |
|
tic = toc |
|
for model in trainable_models + checkpoint_models: |
|
model.train() |
|
with accelerator.accumulate(*trainable_models): |
|
loss = torch.tensor(0.0) |
|
|
|
|
|
rand_tensor = torch.rand(batch["images"].shape[0]) |
|
drop_image_idx = rand_tensor < args.image_drop_rate |
|
drop_text_idx = (rand_tensor >= args.image_drop_rate) & (rand_tensor < args.image_drop_rate + args.text_drop_rate) |
|
drop_both_idx = (rand_tensor >= args.image_drop_rate + args.text_drop_rate) & (rand_tensor < args.image_drop_rate + args.text_drop_rate + args.cond_drop_rate) |
|
drop_image_idx = drop_image_idx | drop_both_idx |
|
drop_text_idx = drop_text_idx | drop_both_idx |
|
|
|
|
|
with torch.no_grad(): |
|
lq_img, gt_img = deg_pipeline(batch["images"], (batch["kernel"], batch["kernel2"], batch["sinc_kernel"])) |
|
lq_pt = image_processor( |
|
images=lq_img*0.5+0.5, |
|
do_rescale=False, return_tensors="pt" |
|
).pixel_values |
|
image_embeds = prepare_training_image_embeds( |
|
image_encoder, image_processor, |
|
ip_adapter_image=lq_pt, ip_adapter_image_embeds=None, |
|
device=accelerator.device, drop_rate=args.image_drop_rate, output_hidden_state=args.image_encoder_hidden_feature, |
|
idx_to_replace=drop_image_idx |
|
) |
|
|
|
|
|
prompt_embeds_input, added_conditions = compute_embeddings_fn(batch, drop_idx=drop_text_idx) |
|
added_conditions["image_embeds"] = image_embeds |
|
|
|
|
|
gt_img = gt_img.to(dtype=vae.dtype) |
|
model_input = convert_to_latent(gt_img) |
|
if args.pretrained_vae_model_name_or_path is None: |
|
model_input = model_input.to(weight_dtype) |
|
|
|
|
|
noise = torch.randn_like(model_input) |
|
bsz = model_input.shape[0] |
|
|
|
|
|
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device) |
|
|
|
|
|
|
|
noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps) |
|
loss_weights = extract_into_tensor(importance_ratio, timesteps, noise.shape) if args.importance_sampling else None |
|
|
|
toc = time.time() |
|
prepare_time = toc - tic |
|
tic = time.time() |
|
|
|
model_pred = unet( |
|
noisy_model_input, timesteps, |
|
encoder_hidden_states=prompt_embeds_input, |
|
added_cond_kwargs=added_conditions, |
|
return_dict=False |
|
)[0] |
|
|
|
diffusion_loss_arguments = { |
|
"target": noise, |
|
"predict": model_pred, |
|
"prompt_embeddings_input": prompt_embeds_input, |
|
"timesteps": timesteps, |
|
"weights": loss_weights, |
|
} |
|
|
|
loss_dict = dict() |
|
for loss_config in diffusion_losses: |
|
non_weighted_loss = loss_config.loss(**diffusion_loss_arguments, accelerator=accelerator) |
|
loss = loss + non_weighted_loss * loss_config.weight |
|
loss_dict[loss_config.loss.__class__.__name__] = non_weighted_loss.item() |
|
|
|
accelerator.backward(loss) |
|
if accelerator.sync_gradients: |
|
accelerator.clip_grad_norm_(params_to_optimize, args.max_grad_norm) |
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad() |
|
|
|
toc = time.time() |
|
forward_time = toc - tic |
|
tic = toc |
|
|
|
|
|
if accelerator.sync_gradients: |
|
progress_bar.update(1) |
|
global_step += 1 |
|
|
|
if accelerator.is_main_process: |
|
if global_step % args.checkpointing_steps == 0: |
|
|
|
if args.checkpoints_total_limit is not None: |
|
checkpoints = os.listdir(args.output_dir) |
|
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] |
|
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) |
|
|
|
|
|
if len(checkpoints) >= args.checkpoints_total_limit: |
|
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 |
|
removing_checkpoints = checkpoints[0:num_to_remove] |
|
|
|
logger.info( |
|
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" |
|
) |
|
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") |
|
|
|
for removing_checkpoint in removing_checkpoints: |
|
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) |
|
shutil.rmtree(removing_checkpoint) |
|
|
|
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") |
|
accelerator.save_state(save_path) |
|
logger.info(f"Saved state to {save_path}") |
|
|
|
if global_step % args.validation_steps == 0: |
|
image_logs = log_validation(unwrap_model(unet), vae, |
|
text_encoder, text_encoder_2, tokenizer, tokenizer_2, |
|
noise_scheduler, image_encoder, image_processor, deg_pipeline, |
|
args, accelerator, weight_dtype, global_step, lq_img, gt_img, is_final_validation=False) |
|
|
|
logs = {} |
|
logs.update(loss_dict) |
|
logs.update({ |
|
"lr": lr_scheduler.get_last_lr()[0], |
|
"io_time": io_time, |
|
"prepare_time": prepare_time, |
|
"forward_time": forward_time |
|
}) |
|
progress_bar.set_postfix(**logs) |
|
accelerator.log(logs, step=global_step) |
|
tic = time.time() |
|
|
|
if global_step >= args.max_train_steps: |
|
break |
|
|
|
|
|
accelerator.wait_for_everyone() |
|
if accelerator.is_main_process: |
|
accelerator.save_state(os.path.join(args.output_dir, "last"), safe_serialization=False) |
|
|
|
|
|
image_logs = None |
|
if args.validation_image is not None: |
|
image_logs = log_validation( |
|
unwrap_model(unet), vae, |
|
text_encoder, text_encoder_2, tokenizer, tokenizer_2, |
|
noise_scheduler, image_encoder, image_processor, deg_pipeline, |
|
args, accelerator, weight_dtype, global_step, |
|
) |
|
|
|
accelerator.end_training() |
|
|
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
main(args) |