# After DCP training, distill the Previewer with DCP in `train_previewer_lora.py`: | |
accelerate launch --num_processes <num_of_gpus> train_previewer_lora.py \ | |
--output_dir <your/output/path> \ | |
--train_data_dir <your/data/path> \ | |
--logging_dir <your/logging/path> \ | |
--pretrained_model_name_or_path <your/sdxl/path> \ | |
--feature_extractor_path <your/dinov2/path> \ | |
--pretrained_adapter_model_path <your/dcp/path> \ | |
--losses_config_path config_files/losses.yaml \ | |
--data_config_path config_files/IR_dataset.yaml \ | |
--save_only_adapter \ | |
--gradient_checkpointing \ | |
--num_train_timesteps 1000 \ | |
--num_ddim_timesteps 50 \ | |
--lora_alpha 1 \ | |
--mixed_precision fp16 \ | |
--train_batch_size 32 \ | |
--vae_encode_batch_size 16 \ | |
--gradient_accumulation_steps 1 \ | |
--learning_rate 1e-4 \ | |
--lr_warmup_steps 1000 \ | |
--lr_scheduler cosine \ | |
--lr_num_cycles 1 \ | |
--resume_from_checkpoint latest |