|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import copy |
|
import functools |
|
import gc |
|
import logging |
|
import pyrallis |
|
import math |
|
import os |
|
import random |
|
import shutil |
|
from contextlib import nullcontext |
|
from pathlib import Path |
|
|
|
import accelerate |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
import transformers |
|
from PIL import Image |
|
from accelerate import Accelerator |
|
from accelerate.logging import get_logger |
|
from accelerate.utils import ProjectConfiguration, set_seed |
|
from datasets import load_dataset |
|
from huggingface_hub import create_repo, upload_folder |
|
from packaging import version |
|
from collections import namedtuple |
|
from peft import LoraConfig, get_peft_model_state_dict, set_peft_model_state_dict |
|
from torchvision import transforms |
|
from torchvision.transforms.functional import crop |
|
from tqdm.auto import tqdm |
|
from transformers import ( |
|
AutoTokenizer, |
|
PretrainedConfig, |
|
CLIPImageProcessor, CLIPVisionModelWithProjection, |
|
AutoImageProcessor, AutoModel |
|
) |
|
|
|
import diffusers |
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDPMScheduler, |
|
LCMScheduler, |
|
StableDiffusionXLPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.optimization import get_scheduler |
|
from diffusers.training_utils import cast_training_params, resolve_interpolation_mode |
|
from diffusers.utils import ( |
|
check_min_version, |
|
convert_state_dict_to_diffusers, |
|
convert_unet_state_dict_to_peft, |
|
is_wandb_available, |
|
) |
|
from diffusers.utils.import_utils import is_xformers_available |
|
from diffusers.utils.torch_utils import is_compiled_module |
|
|
|
from basicsr.utils.degradation_pipeline import RealESRGANDegradation |
|
from utils.train_utils import ( |
|
seperate_ip_params_from_unet, |
|
import_model_class_from_model_name_or_path, |
|
tensor_to_pil, |
|
get_train_dataset, prepare_train_dataset, collate_fn, |
|
encode_prompt, importance_sampling_fn, extract_into_tensor |
|
|
|
) |
|
from data.data_config import DataConfig |
|
from losses.loss_config import LossesConfig |
|
from losses.losses import * |
|
|
|
from module.ip_adapter.resampler import Resampler |
|
from module.ip_adapter.utils import init_adapter_in_unet, prepare_training_image_embeds |
|
|
|
|
|
if is_wandb_available(): |
|
import wandb |
|
|
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
def prepare_latents(lq, vae, scheduler, generator, timestep): |
|
transform = transforms.Compose([ |
|
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), |
|
transforms.CenterCrop(args.resolution), |
|
transforms.ToTensor(), |
|
]) |
|
lq_pt = [transform(lq_pil.convert("RGB")) for lq_pil in lq] |
|
img_pt = torch.stack(lq_pt).to(vae.device, dtype=vae.dtype) |
|
img_pt = img_pt * 2.0 - 1.0 |
|
with torch.no_grad(): |
|
latents = vae.encode(img_pt).latent_dist.sample() |
|
latents = latents * vae.config.scaling_factor |
|
noise = torch.randn(latents.shape, generator=generator, device=vae.device, dtype=vae.dtype, layout=torch.strided).to(vae.device) |
|
bsz = latents.shape[0] |
|
print(f"init latent at {timestep}") |
|
timestep = torch.tensor([timestep]*bsz, device=vae.device, dtype=torch.int64) |
|
latents = scheduler.add_noise(latents, noise, timestep) |
|
return latents |
|
|
|
|
|
def log_validation(unet, vae, text_encoder, text_encoder_2, tokenizer, tokenizer_2, |
|
scheduler, image_encoder, image_processor, |
|
args, accelerator, weight_dtype, step, lq_img=None, gt_img=None, is_final_validation=False, log_local=False): |
|
logger.info("Running validation... ") |
|
|
|
image_logs = [] |
|
|
|
lq = [Image.open(lq_example) for lq_example in args.validation_image] |
|
|
|
pipe = StableDiffusionXLPipeline( |
|
vae, text_encoder, text_encoder_2, tokenizer, tokenizer_2, |
|
unet, scheduler, image_encoder, image_processor, |
|
).to(accelerator.device) |
|
|
|
timesteps = [args.num_train_timesteps - 1] |
|
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) |
|
latents = prepare_latents(lq, vae, scheduler, generator, timesteps[-1]) |
|
image = pipe( |
|
prompt=[""]*len(lq), |
|
ip_adapter_image=[lq], |
|
num_inference_steps=1, |
|
timesteps=timesteps, |
|
generator=generator, |
|
guidance_scale=1.0, |
|
height=args.resolution, |
|
width=args.resolution, |
|
latents=latents, |
|
).images |
|
|
|
if log_local: |
|
|
|
|
|
|
|
|
|
for i, img in enumerate(image): |
|
img.save(f"./lq_IPA_{i}.png") |
|
return |
|
|
|
tracker_key = "test" if is_final_validation else "validation" |
|
for tracker in accelerator.trackers: |
|
if tracker.name == "tensorboard": |
|
images = [np.asarray(pil_img) for pil_img in image] |
|
images = np.stack(images, axis=0) |
|
if lq_img is not None and gt_img is not None: |
|
input_lq = lq_img.detach().cpu() |
|
input_lq = np.asarray(input_lq.add(1).div(2).clamp(0, 1)) |
|
input_gt = gt_img.detach().cpu() |
|
input_gt = np.asarray(input_gt.add(1).div(2).clamp(0, 1)) |
|
tracker.writer.add_images("lq", input_lq, step, dataformats="NCHW") |
|
tracker.writer.add_images("gt", input_gt, step, dataformats="NCHW") |
|
tracker.writer.add_images("rec", images, step, dataformats="NHWC") |
|
elif tracker.name == "wandb": |
|
raise NotImplementedError("Wandb logging not implemented for validation.") |
|
formatted_images = [] |
|
|
|
for log in image_logs: |
|
images = log["images"] |
|
validation_prompt = log["validation_prompt"] |
|
validation_image = log["validation_image"] |
|
|
|
formatted_images.append(wandb.Image(validation_image, caption="Controlnet conditioning")) |
|
|
|
for image in images: |
|
image = wandb.Image(image, caption=validation_prompt) |
|
formatted_images.append(image) |
|
|
|
tracker.log({tracker_key: formatted_images}) |
|
else: |
|
logger.warning(f"image logging not implemented for {tracker.name}") |
|
|
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
return image_logs |
|
|
|
|
|
class DDIMSolver: |
|
def __init__(self, alpha_cumprods, timesteps=1000, ddim_timesteps=50): |
|
|
|
step_ratio = timesteps // ddim_timesteps |
|
|
|
self.ddim_timesteps = (np.arange(1, ddim_timesteps + 1) * step_ratio).round().astype(np.int64) - 1 |
|
self.ddim_alpha_cumprods = alpha_cumprods[self.ddim_timesteps] |
|
self.ddim_alpha_cumprods_prev = np.asarray( |
|
[alpha_cumprods[0]] + alpha_cumprods[self.ddim_timesteps[:-1]].tolist() |
|
) |
|
|
|
self.ddim_timesteps = torch.from_numpy(self.ddim_timesteps).long() |
|
self.ddim_alpha_cumprods = torch.from_numpy(self.ddim_alpha_cumprods) |
|
self.ddim_alpha_cumprods_prev = torch.from_numpy(self.ddim_alpha_cumprods_prev) |
|
|
|
def to(self, device): |
|
self.ddim_timesteps = self.ddim_timesteps.to(device) |
|
self.ddim_alpha_cumprods = self.ddim_alpha_cumprods.to(device) |
|
self.ddim_alpha_cumprods_prev = self.ddim_alpha_cumprods_prev.to(device) |
|
return self |
|
|
|
def ddim_step(self, pred_x0, pred_noise, timestep_index): |
|
alpha_cumprod_prev = extract_into_tensor(self.ddim_alpha_cumprods_prev, timestep_index, pred_x0.shape) |
|
dir_xt = (1.0 - alpha_cumprod_prev).sqrt() * pred_noise |
|
x_prev = alpha_cumprod_prev.sqrt() * pred_x0 + dir_xt |
|
return x_prev |
|
|
|
|
|
def append_dims(x, target_dims): |
|
"""Appends dimensions to the end of a tensor until it has target_dims dimensions.""" |
|
dims_to_append = target_dims - x.ndim |
|
if dims_to_append < 0: |
|
raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less") |
|
return x[(...,) + (None,) * dims_to_append] |
|
|
|
|
|
|
|
def scalings_for_boundary_conditions(timestep, sigma_data=0.5, timestep_scaling=10.0): |
|
scaled_timestep = timestep_scaling * timestep |
|
c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2) |
|
c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5 |
|
return c_skip, c_out |
|
|
|
|
|
|
|
def get_predicted_original_sample(model_output, timesteps, sample, prediction_type, alphas, sigmas): |
|
alphas = extract_into_tensor(alphas, timesteps, sample.shape) |
|
sigmas = extract_into_tensor(sigmas, timesteps, sample.shape) |
|
if prediction_type == "epsilon": |
|
pred_x_0 = (sample - sigmas * model_output) / alphas |
|
elif prediction_type == "sample": |
|
pred_x_0 = model_output |
|
elif prediction_type == "v_prediction": |
|
pred_x_0 = alphas * sample - sigmas * model_output |
|
else: |
|
raise ValueError( |
|
f"Prediction type {prediction_type} is not supported; currently, `epsilon`, `sample`, and `v_prediction`" |
|
f" are supported." |
|
) |
|
|
|
return pred_x_0 |
|
|
|
|
|
|
|
def get_predicted_noise(model_output, timesteps, sample, prediction_type, alphas, sigmas): |
|
alphas = extract_into_tensor(alphas, timesteps, sample.shape) |
|
sigmas = extract_into_tensor(sigmas, timesteps, sample.shape) |
|
if prediction_type == "epsilon": |
|
pred_epsilon = model_output |
|
elif prediction_type == "sample": |
|
pred_epsilon = (sample - alphas * model_output) / sigmas |
|
elif prediction_type == "v_prediction": |
|
pred_epsilon = alphas * model_output + sigmas * sample |
|
else: |
|
raise ValueError( |
|
f"Prediction type {prediction_type} is not supported; currently, `epsilon`, `sample`, and `v_prediction`" |
|
f" are supported." |
|
) |
|
|
|
return pred_epsilon |
|
|
|
|
|
def extract_into_tensor(a, t, x_shape): |
|
b, *_ = t.shape |
|
out = a.gather(-1, t) |
|
return out.reshape(b, *((1,) * (len(x_shape) - 1))) |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description="Simple example of a training script.") |
|
|
|
parser.add_argument( |
|
"--pretrained_model_name_or_path", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="Path to pretrained LDM teacher model or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--pretrained_vae_model_name_or_path", |
|
type=str, |
|
default=None, |
|
help="Path to pretrained VAE model with better numerical stability. More details: https://github.com/huggingface/diffusers/pull/4038.", |
|
) |
|
parser.add_argument( |
|
"--teacher_revision", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="Revision of pretrained LDM teacher model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--revision", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="Revision of pretrained LDM model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--pretrained_lcm_lora_path", |
|
type=str, |
|
default=None, |
|
help="Path to LCM lora or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--feature_extractor_path", |
|
type=str, |
|
default=None, |
|
help="Path to image encoder for IP-Adapters or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--pretrained_adapter_model_path", |
|
type=str, |
|
default=None, |
|
help="Path to IP-Adapter models or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--adapter_tokens", |
|
type=int, |
|
default=64, |
|
help="Number of tokens to use in IP-adapter cross attention mechanism.", |
|
) |
|
parser.add_argument( |
|
"--use_clip_encoder", |
|
action="store_true", |
|
help="Whether or not to use DINO as image encoder, else CLIP encoder.", |
|
) |
|
parser.add_argument( |
|
"--image_encoder_hidden_feature", |
|
action="store_true", |
|
help="Whether or not to use the penultimate hidden states as image embeddings.", |
|
) |
|
|
|
|
|
parser.add_argument( |
|
"--output_dir", |
|
type=str, |
|
default="lcm-xl-distilled", |
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
) |
|
parser.add_argument( |
|
"--cache_dir", |
|
type=str, |
|
default=None, |
|
help="The directory where the downloaded models and datasets will be stored.", |
|
) |
|
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.") |
|
|
|
parser.add_argument( |
|
"--logging_dir", |
|
type=str, |
|
default="logs", |
|
help=( |
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" |
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." |
|
), |
|
) |
|
parser.add_argument( |
|
"--report_to", |
|
type=str, |
|
default="tensorboard", |
|
help=( |
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' |
|
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' |
|
), |
|
) |
|
|
|
parser.add_argument( |
|
"--checkpointing_steps", |
|
type=int, |
|
default=4000, |
|
help=( |
|
"Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" |
|
" training using `--resume_from_checkpoint`." |
|
), |
|
) |
|
parser.add_argument( |
|
"--checkpoints_total_limit", |
|
type=int, |
|
default=5, |
|
help=("Max number of checkpoints to store."), |
|
) |
|
parser.add_argument( |
|
"--resume_from_checkpoint", |
|
type=str, |
|
default=None, |
|
help=( |
|
"Whether training should be resumed from a previous checkpoint. Use a path saved by" |
|
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' |
|
), |
|
) |
|
parser.add_argument( |
|
"--save_only_adapter", |
|
action="store_true", |
|
help="Only save extra adapter to save space.", |
|
) |
|
|
|
parser.add_argument( |
|
"--data_config_path", |
|
type=str, |
|
default=None, |
|
help=("A folder containing the training data. "), |
|
) |
|
parser.add_argument( |
|
"--train_data_dir", |
|
type=str, |
|
default=None, |
|
help=( |
|
"A folder containing the training data. Folder contents must follow the structure described in" |
|
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" |
|
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified." |
|
), |
|
) |
|
parser.add_argument( |
|
"--image_column", type=str, default="image", help="The column of the dataset containing an image." |
|
) |
|
parser.add_argument( |
|
"--conditioning_image_column", |
|
type=str, |
|
default="conditioning_image", |
|
help="The column of the dataset containing the controlnet conditioning image.", |
|
) |
|
parser.add_argument( |
|
"--caption_column", |
|
type=str, |
|
default="text", |
|
help="The column of the dataset containing a caption or a list of captions.", |
|
) |
|
parser.add_argument( |
|
"--text_drop_rate", |
|
type=float, |
|
default=0, |
|
help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).", |
|
) |
|
parser.add_argument( |
|
"--image_drop_rate", |
|
type=float, |
|
default=0, |
|
help="Proportion of IP-Adapter inputs to be dropped. Defaults to 0 (no drop-out).", |
|
) |
|
parser.add_argument( |
|
"--cond_drop_rate", |
|
type=float, |
|
default=0, |
|
help="Proportion of all conditions to be dropped. Defaults to 0 (no drop-out).", |
|
) |
|
parser.add_argument( |
|
"--resolution", |
|
type=int, |
|
default=1024, |
|
help=( |
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this" |
|
" resolution" |
|
), |
|
) |
|
parser.add_argument( |
|
"--interpolation_type", |
|
type=str, |
|
default="bilinear", |
|
help=( |
|
"The interpolation function used when resizing images to the desired resolution. Choose between `bilinear`," |
|
" `bicubic`, `box`, `nearest`, `nearest_exact`, `hamming`, and `lanczos`." |
|
), |
|
) |
|
parser.add_argument( |
|
"--center_crop", |
|
default=False, |
|
action="store_true", |
|
help=( |
|
"Whether to center crop the input images to the resolution. If not set, the images will be randomly" |
|
" cropped. The images will be resized to the resolution first before cropping." |
|
), |
|
) |
|
parser.add_argument( |
|
"--random_flip", |
|
action="store_true", |
|
help="whether to randomly flip images horizontally", |
|
) |
|
parser.add_argument( |
|
"--encode_batch_size", |
|
type=int, |
|
default=8, |
|
help="Batch size to use for VAE encoding of the images for efficient processing.", |
|
) |
|
|
|
parser.add_argument( |
|
"--dataloader_num_workers", |
|
type=int, |
|
default=0, |
|
help=( |
|
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." |
|
), |
|
) |
|
|
|
parser.add_argument( |
|
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." |
|
) |
|
parser.add_argument("--num_train_epochs", type=int, default=100) |
|
parser.add_argument( |
|
"--max_train_steps", |
|
type=int, |
|
default=None, |
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
|
) |
|
parser.add_argument( |
|
"--max_train_samples", |
|
type=int, |
|
default=None, |
|
help=( |
|
"For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
), |
|
) |
|
|
|
parser.add_argument( |
|
"--learning_rate", |
|
type=float, |
|
default=1e-6, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument( |
|
"--scale_lr", |
|
action="store_true", |
|
default=False, |
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", |
|
) |
|
parser.add_argument( |
|
"--lr_scheduler", |
|
type=str, |
|
default="constant", |
|
help=( |
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' |
|
' "constant", "constant_with_warmup"]' |
|
), |
|
) |
|
parser.add_argument( |
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." |
|
) |
|
parser.add_argument( |
|
"--lr_num_cycles", |
|
type=int, |
|
default=1, |
|
help="Number of hard resets of the lr in cosine_with_restarts scheduler.", |
|
) |
|
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") |
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
|
|
parser.add_argument( |
|
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." |
|
) |
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") |
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") |
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") |
|
|
|
|
|
parser.add_argument( |
|
"--w_min", |
|
type=float, |
|
default=3.0, |
|
required=False, |
|
help=( |
|
"The minimum guidance scale value for guidance scale sampling. Note that we are using the Imagen CFG" |
|
" formulation rather than the LCM formulation, which means all guidance scales have 1 added to them as" |
|
" compared to the original paper." |
|
), |
|
) |
|
parser.add_argument( |
|
"--w_max", |
|
type=float, |
|
default=15.0, |
|
required=False, |
|
help=( |
|
"The maximum guidance scale value for guidance scale sampling. Note that we are using the Imagen CFG" |
|
" formulation rather than the LCM formulation, which means all guidance scales have 1 added to them as" |
|
" compared to the original paper." |
|
), |
|
) |
|
parser.add_argument( |
|
"--num_train_timesteps", |
|
type=int, |
|
default=1000, |
|
help="The number of timesteps to use for DDIM sampling.", |
|
) |
|
parser.add_argument( |
|
"--num_ddim_timesteps", |
|
type=int, |
|
default=50, |
|
help="The number of timesteps to use for DDIM sampling.", |
|
) |
|
parser.add_argument( |
|
"--losses_config_path", |
|
type=str, |
|
default='config_files/losses.yaml', |
|
required=True, |
|
help=("A yaml file containing losses to use and their weights."), |
|
) |
|
parser.add_argument( |
|
"--loss_type", |
|
type=str, |
|
default="l2", |
|
choices=["l2", "huber"], |
|
help="The type of loss to use for the LCD loss.", |
|
) |
|
parser.add_argument( |
|
"--huber_c", |
|
type=float, |
|
default=0.001, |
|
help="The huber loss parameter. Only used if `--loss_type=huber`.", |
|
) |
|
parser.add_argument( |
|
"--lora_rank", |
|
type=int, |
|
default=64, |
|
help="The rank of the LoRA projection matrix.", |
|
) |
|
parser.add_argument( |
|
"--lora_alpha", |
|
type=int, |
|
default=64, |
|
help=( |
|
"The value of the LoRA alpha parameter, which controls the scaling factor in front of the LoRA weight" |
|
" update delta_W. No scaling will be performed if this value is equal to `lora_rank`." |
|
), |
|
) |
|
parser.add_argument( |
|
"--lora_dropout", |
|
type=float, |
|
default=0.0, |
|
help="The dropout probability for the dropout layer added before applying the LoRA to each layer input.", |
|
) |
|
parser.add_argument( |
|
"--lora_target_modules", |
|
type=str, |
|
default=None, |
|
help=( |
|
"A comma-separated string of target module keys to add LoRA to. If not set, a default list of modules will" |
|
" be used. By default, LoRA will be applied to all conv and linear layers." |
|
), |
|
) |
|
parser.add_argument( |
|
"--vae_encode_batch_size", |
|
type=int, |
|
default=8, |
|
required=False, |
|
help=( |
|
"The batch size used when encoding (and decoding) images to latents (and vice versa) using the VAE." |
|
" Encoding or decoding the whole batch at once may run into OOM issues." |
|
), |
|
) |
|
parser.add_argument( |
|
"--timestep_scaling_factor", |
|
type=float, |
|
default=10.0, |
|
help=( |
|
"The multiplicative timestep scaling factor used when calculating the boundary scalings for LCM. The" |
|
" higher the scaling is, the lower the approximation error, but the default value of 10.0 should typically" |
|
" suffice." |
|
), |
|
) |
|
|
|
parser.add_argument( |
|
"--mixed_precision", |
|
type=str, |
|
default=None, |
|
choices=["no", "fp16", "bf16"], |
|
help=( |
|
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" |
|
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" |
|
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." |
|
), |
|
) |
|
parser.add_argument( |
|
"--allow_tf32", |
|
action="store_true", |
|
help=( |
|
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" |
|
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" |
|
), |
|
) |
|
|
|
parser.add_argument( |
|
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." |
|
) |
|
parser.add_argument( |
|
"--gradient_checkpointing", |
|
action="store_true", |
|
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", |
|
) |
|
|
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") |
|
|
|
parser.add_argument( |
|
"--validation_steps", |
|
type=int, |
|
default=3000, |
|
help="Run validation every X steps.", |
|
) |
|
parser.add_argument( |
|
"--validation_image", |
|
type=str, |
|
default=None, |
|
nargs="+", |
|
help=( |
|
"A set of paths to the controlnet conditioning image be evaluated every `--validation_steps`" |
|
" and logged to `--report_to`. Provide either a matching number of `--validation_prompt`s, a" |
|
" a single `--validation_prompt` to be used with all `--validation_image`s, or a single" |
|
" `--validation_image` that will be used with all `--validation_prompt`s." |
|
), |
|
) |
|
parser.add_argument( |
|
"--validation_prompt", |
|
type=str, |
|
default=None, |
|
nargs="+", |
|
help=( |
|
"A set of prompts evaluated every `--validation_steps` and logged to `--report_to`." |
|
" Provide either a matching number of `--validation_image`s, a single `--validation_image`" |
|
" to be used with all prompts, or a single prompt that will be used with all `--validation_image`s." |
|
), |
|
) |
|
parser.add_argument( |
|
"--sanity_check", |
|
action="store_true", |
|
help=( |
|
"sanity check" |
|
), |
|
) |
|
|
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") |
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") |
|
parser.add_argument( |
|
"--hub_model_id", |
|
type=str, |
|
default=None, |
|
help="The name of the repository to keep in sync with the local `output_dir`.", |
|
) |
|
|
|
parser.add_argument( |
|
"--tracker_project_name", |
|
type=str, |
|
default="trian", |
|
help=( |
|
"The `project_name` argument passed to Accelerator.init_trackers for" |
|
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator" |
|
), |
|
) |
|
|
|
args = parser.parse_args() |
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) |
|
if env_local_rank != -1 and env_local_rank != args.local_rank: |
|
args.local_rank = env_local_rank |
|
|
|
return args |
|
|
|
|
|
def main(args): |
|
if args.report_to == "wandb" and args.hub_token is not None: |
|
raise ValueError( |
|
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." |
|
" Please use `huggingface-cli login` to authenticate with the Hub." |
|
) |
|
|
|
logging_dir = Path(args.output_dir, args.logging_dir) |
|
|
|
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) |
|
|
|
accelerator = Accelerator( |
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
mixed_precision=args.mixed_precision, |
|
log_with=args.report_to, |
|
project_config=accelerator_project_config, |
|
) |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
logger.info(accelerator.state, main_process_only=False) |
|
if accelerator.is_local_main_process: |
|
transformers.utils.logging.set_verbosity_warning() |
|
diffusers.utils.logging.set_verbosity_info() |
|
else: |
|
transformers.utils.logging.set_verbosity_error() |
|
diffusers.utils.logging.set_verbosity_error() |
|
|
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
|
|
if accelerator.is_main_process: |
|
if args.output_dir is not None: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
|
|
noise_scheduler = DDPMScheduler.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="scheduler", revision=args.teacher_revision |
|
) |
|
noise_scheduler.config.num_train_timesteps = args.num_train_timesteps |
|
lcm_scheduler = LCMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") |
|
|
|
|
|
alpha_schedule = torch.sqrt(noise_scheduler.alphas_cumprod) |
|
sigma_schedule = torch.sqrt(1 - noise_scheduler.alphas_cumprod) |
|
|
|
solver = DDIMSolver( |
|
noise_scheduler.alphas_cumprod.numpy(), |
|
timesteps=noise_scheduler.config.num_train_timesteps, |
|
ddim_timesteps=args.num_ddim_timesteps, |
|
) |
|
|
|
|
|
tokenizer_one = AutoTokenizer.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.teacher_revision, use_fast=False |
|
) |
|
tokenizer_two = AutoTokenizer.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="tokenizer_2", revision=args.teacher_revision, use_fast=False |
|
) |
|
|
|
|
|
|
|
text_encoder_cls_one = import_model_class_from_model_name_or_path( |
|
args.pretrained_model_name_or_path, args.teacher_revision |
|
) |
|
text_encoder_cls_two = import_model_class_from_model_name_or_path( |
|
args.pretrained_model_name_or_path, args.teacher_revision, subfolder="text_encoder_2" |
|
) |
|
|
|
text_encoder_one = text_encoder_cls_one.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.teacher_revision |
|
) |
|
text_encoder_two = text_encoder_cls_two.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.teacher_revision |
|
) |
|
|
|
if args.use_clip_encoder: |
|
image_processor = CLIPImageProcessor() |
|
image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.feature_extractor_path) |
|
else: |
|
image_processor = AutoImageProcessor.from_pretrained(args.feature_extractor_path) |
|
image_encoder = AutoModel.from_pretrained(args.feature_extractor_path) |
|
|
|
|
|
vae_path = ( |
|
args.pretrained_model_name_or_path |
|
if args.pretrained_vae_model_name_or_path is None |
|
else args.pretrained_vae_model_name_or_path |
|
) |
|
vae = AutoencoderKL.from_pretrained( |
|
vae_path, |
|
subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None, |
|
revision=args.teacher_revision, |
|
) |
|
|
|
|
|
unet = UNet2DConditionModel.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="unet", revision=args.teacher_revision |
|
) |
|
|
|
|
|
image_proj_model = Resampler( |
|
dim=1280, |
|
depth=4, |
|
dim_head=64, |
|
heads=20, |
|
num_queries=args.adapter_tokens, |
|
embedding_dim=image_encoder.config.hidden_size, |
|
output_dim=unet.config.cross_attention_dim, |
|
ff_mult=4 |
|
) |
|
|
|
|
|
init_adapter_in_unet( |
|
unet, |
|
image_proj_model, |
|
os.path.join(args.pretrained_adapter_model_path, 'adapter_ckpt.pt'), |
|
adapter_tokens=args.adapter_tokens, |
|
) |
|
|
|
|
|
low_precision_error_string = ( |
|
" Please make sure to always have all model weights in full float32 precision when starting training - even if" |
|
" doing mixed precision training, copy of the weights should still be float32." |
|
) |
|
|
|
def unwrap_model(model): |
|
model = accelerator.unwrap_model(model) |
|
model = model._orig_mod if is_compiled_module(model) else model |
|
return model |
|
|
|
if unwrap_model(unet).dtype != torch.float32: |
|
raise ValueError( |
|
f"Controlnet loaded as datatype {unwrap_model(unet).dtype}. {low_precision_error_string}" |
|
) |
|
|
|
if args.pretrained_lcm_lora_path is not None: |
|
lora_state_dict, alpha_dict = StableDiffusionXLPipeline.lora_state_dict(args.pretrained_lcm_lora_path) |
|
unet_state_dict = { |
|
f'{k.replace("unet.", "")}': v for k, v in lora_state_dict.items() if k.startswith("unet.") |
|
} |
|
unet_state_dict = convert_unet_state_dict_to_peft(unet_state_dict) |
|
lora_state_dict = dict() |
|
for k, v in unet_state_dict.items(): |
|
if "ip" in k: |
|
k = k.replace("attn2", "attn2.processor") |
|
lora_state_dict[k] = v |
|
else: |
|
lora_state_dict[k] = v |
|
if alpha_dict: |
|
args.lora_alpha = next(iter(alpha_dict.values())) |
|
else: |
|
args.lora_alpha = 1 |
|
|
|
if args.lora_target_modules is not None: |
|
lora_target_modules = [module_key.strip() for module_key in args.lora_target_modules.split(",")] |
|
else: |
|
lora_target_modules = [ |
|
"to_q", |
|
"to_kv", |
|
"0.to_out", |
|
"attn1.to_k", |
|
"attn1.to_v", |
|
"to_k_ip", |
|
"to_v_ip", |
|
"ln_k_ip.linear", |
|
"ln_v_ip.linear", |
|
"to_out.0", |
|
"proj_in", |
|
"proj_out", |
|
"ff.net.0.proj", |
|
"ff.net.2", |
|
"conv1", |
|
"conv2", |
|
"conv_shortcut", |
|
"downsamplers.0.conv", |
|
"upsamplers.0.conv", |
|
"time_emb_proj", |
|
] |
|
lora_config = LoraConfig( |
|
r=args.lora_rank, |
|
target_modules=lora_target_modules, |
|
lora_alpha=args.lora_alpha, |
|
lora_dropout=args.lora_dropout, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
unet.add_adapter(lora_config) |
|
if args.pretrained_lcm_lora_path is not None: |
|
incompatible_keys = set_peft_model_state_dict(unet, lora_state_dict, adapter_name="default") |
|
if incompatible_keys is not None: |
|
|
|
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None) |
|
if unexpected_keys: |
|
logger.warning( |
|
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: " |
|
f" {unexpected_keys}. " |
|
) |
|
|
|
|
|
vae.requires_grad_(False) |
|
text_encoder_one.requires_grad_(False) |
|
text_encoder_two.requires_grad_(False) |
|
image_encoder.requires_grad_(False) |
|
unet.requires_grad_(False) |
|
|
|
|
|
|
|
if args.save_only_adapter: |
|
|
|
def save_model_hook(models, weights, output_dir): |
|
if accelerator.is_main_process: |
|
for model in models: |
|
if isinstance(model, type(unwrap_model(unet))): |
|
unet_ = unwrap_model(model) |
|
|
|
|
|
state_dict = convert_state_dict_to_diffusers(get_peft_model_state_dict(unet_)) |
|
StableDiffusionXLPipeline.save_lora_weights(output_dir, unet_lora_layers=state_dict, safe_serialization=False) |
|
|
|
weights.pop() |
|
|
|
def load_model_hook(models, input_dir): |
|
|
|
while len(models) > 0: |
|
|
|
model = models.pop() |
|
|
|
if isinstance(model, type(unwrap_model(unet))): |
|
unet_ = unwrap_model(model) |
|
lora_state_dict, _ = StableDiffusionXLPipeline.lora_state_dict(input_dir) |
|
unet_state_dict = { |
|
f'{k.replace("unet.", "")}': v for k, v in lora_state_dict.items() if k.startswith("unet.") |
|
} |
|
unet_state_dict = convert_unet_state_dict_to_peft(unet_state_dict) |
|
lora_state_dict = dict() |
|
for k, v in unet_state_dict.items(): |
|
if "ip" in k: |
|
k = k.replace("attn2", "attn2.processor") |
|
lora_state_dict[k] = v |
|
else: |
|
lora_state_dict[k] = v |
|
incompatible_keys = set_peft_model_state_dict(unet_, lora_state_dict, adapter_name="default") |
|
if incompatible_keys is not None: |
|
|
|
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None) |
|
if unexpected_keys: |
|
logger.warning( |
|
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: " |
|
f" {unexpected_keys}. " |
|
) |
|
|
|
accelerator.register_save_state_pre_hook(save_model_hook) |
|
accelerator.register_load_state_pre_hook(load_model_hook) |
|
|
|
|
|
if args.enable_xformers_memory_efficient_attention: |
|
if is_xformers_available(): |
|
import xformers |
|
|
|
xformers_version = version.parse(xformers.__version__) |
|
if xformers_version == version.parse("0.0.16"): |
|
logger.warning( |
|
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." |
|
) |
|
unet.enable_xformers_memory_efficient_attention() |
|
else: |
|
raise ValueError("xformers is not available. Make sure it is installed correctly") |
|
|
|
|
|
|
|
if args.allow_tf32: |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
if args.gradient_checkpointing: |
|
unet.enable_gradient_checkpointing() |
|
vae.enable_gradient_checkpointing() |
|
|
|
|
|
if args.use_8bit_adam: |
|
try: |
|
import bitsandbytes as bnb |
|
except ImportError: |
|
raise ImportError( |
|
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." |
|
) |
|
|
|
optimizer_class = bnb.optim.AdamW8bit |
|
else: |
|
optimizer_class = torch.optim.AdamW |
|
|
|
|
|
lora_params, non_lora_params = seperate_lora_params_from_unet(unet) |
|
params_to_optimize = lora_params |
|
optimizer = optimizer_class( |
|
params_to_optimize, |
|
lr=args.learning_rate, |
|
betas=(args.adam_beta1, args.adam_beta2), |
|
weight_decay=args.adam_weight_decay, |
|
eps=args.adam_epsilon, |
|
) |
|
|
|
|
|
|
|
|
|
datasets = [] |
|
datasets_name = [] |
|
datasets_weights = [] |
|
deg_pipeline = RealESRGANDegradation(device=accelerator.device, resolution=args.resolution) |
|
if args.data_config_path is not None: |
|
data_config: DataConfig = pyrallis.load(DataConfig, open(args.data_config_path, "r")) |
|
for single_dataset in data_config.datasets: |
|
datasets_weights.append(single_dataset.dataset_weight) |
|
datasets_name.append(single_dataset.dataset_folder) |
|
dataset_dir = os.path.join(args.train_data_dir, single_dataset.dataset_folder) |
|
image_dataset = get_train_dataset(dataset_dir, dataset_dir, args, accelerator) |
|
image_dataset = prepare_train_dataset(image_dataset, accelerator, deg_pipeline) |
|
datasets.append(image_dataset) |
|
|
|
if data_config.val_dataset is not None: |
|
val_dataset = get_train_dataset(dataset_name, dataset_dir, args, accelerator) |
|
logger.info(f"Datasets mixing: {list(zip(datasets_name, datasets_weights))}") |
|
|
|
|
|
sampler_train = None |
|
if len(datasets) == 1: |
|
train_dataset = datasets[0] |
|
else: |
|
|
|
train_dataset = torch.utils.data.ConcatDataset(datasets) |
|
dataset_weights = [] |
|
for single_dataset, single_weight in zip(datasets, datasets_weights): |
|
dataset_weights.extend([len(train_dataset) / len(single_dataset) * single_weight] * len(single_dataset)) |
|
sampler_train = torch.utils.data.WeightedRandomSampler( |
|
weights=dataset_weights, |
|
num_samples=len(dataset_weights) |
|
) |
|
|
|
|
|
train_dataloader = torch.utils.data.DataLoader( |
|
train_dataset, |
|
sampler=sampler_train, |
|
shuffle=True if sampler_train is None else False, |
|
collate_fn=collate_fn, |
|
batch_size=args.train_batch_size, |
|
num_workers=args.dataloader_num_workers, |
|
) |
|
|
|
|
|
|
|
def compute_embeddings(prompt_batch, original_sizes, crop_coords, text_encoders, tokenizers, is_train=True): |
|
def compute_time_ids(original_size, crops_coords_top_left): |
|
target_size = (args.resolution, args.resolution) |
|
add_time_ids = list(original_size + crops_coords_top_left + target_size) |
|
add_time_ids = torch.tensor([add_time_ids]) |
|
add_time_ids = add_time_ids.to(accelerator.device, dtype=weight_dtype) |
|
return add_time_ids |
|
|
|
prompt_embeds, pooled_prompt_embeds = encode_prompt(prompt_batch, text_encoders, tokenizers, is_train) |
|
add_text_embeds = pooled_prompt_embeds |
|
|
|
add_time_ids = torch.cat([compute_time_ids(s, c) for s, c in zip(original_sizes, crop_coords)]) |
|
|
|
prompt_embeds = prompt_embeds.to(accelerator.device) |
|
add_text_embeds = add_text_embeds.to(accelerator.device) |
|
unet_added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} |
|
|
|
return {"prompt_embeds": prompt_embeds, **unet_added_cond_kwargs} |
|
|
|
text_encoders = [text_encoder_one, text_encoder_two] |
|
tokenizers = [tokenizer_one, tokenizer_two] |
|
|
|
compute_embeddings_fn = functools.partial(compute_embeddings, text_encoders=text_encoders, tokenizers=tokenizers) |
|
|
|
|
|
@torch.no_grad() |
|
def convert_to_latent(pixels): |
|
model_input = vae.encode(pixels).latent_dist.sample() |
|
model_input = model_input * vae.config.scaling_factor |
|
if args.pretrained_vae_model_name_or_path is None: |
|
model_input = model_input.to(weight_dtype) |
|
return model_input |
|
|
|
|
|
|
|
|
|
num_warmup_steps_for_scheduler = args.lr_warmup_steps * accelerator.num_processes |
|
if args.max_train_steps is None: |
|
len_train_dataloader_after_sharding = math.ceil(len(train_dataloader) / accelerator.num_processes) |
|
num_update_steps_per_epoch = math.ceil(len_train_dataloader_after_sharding / args.gradient_accumulation_steps) |
|
num_training_steps_for_scheduler = ( |
|
args.num_train_epochs * num_update_steps_per_epoch * accelerator.num_processes |
|
) |
|
else: |
|
num_training_steps_for_scheduler = args.max_train_steps * accelerator.num_processes |
|
|
|
if args.scale_lr: |
|
args.learning_rate = ( |
|
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes |
|
) |
|
|
|
|
|
if args.mixed_precision == "fp16": |
|
|
|
cast_training_params(unet, dtype=torch.float32) |
|
|
|
lr_scheduler = get_scheduler( |
|
args.lr_scheduler, |
|
optimizer=optimizer, |
|
num_warmup_steps=num_warmup_steps_for_scheduler, |
|
num_training_steps=num_training_steps_for_scheduler, |
|
) |
|
|
|
|
|
|
|
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
unet, optimizer, train_dataloader, lr_scheduler |
|
) |
|
|
|
|
|
|
|
|
|
weight_dtype = torch.float32 |
|
if accelerator.mixed_precision == "fp16": |
|
weight_dtype = torch.float16 |
|
elif accelerator.mixed_precision == "bf16": |
|
weight_dtype = torch.bfloat16 |
|
|
|
|
|
|
|
if args.pretrained_vae_model_name_or_path is None: |
|
vae.to(accelerator.device, dtype=torch.float32) |
|
else: |
|
vae.to(accelerator.device, dtype=weight_dtype) |
|
text_encoder_one.to(accelerator.device, dtype=weight_dtype) |
|
text_encoder_two.to(accelerator.device, dtype=weight_dtype) |
|
image_encoder.to(accelerator.device, dtype=weight_dtype) |
|
for p in non_lora_params: |
|
p.data = p.data.to(dtype=weight_dtype) |
|
for p in lora_params: |
|
p.requires_grad_(True) |
|
unet.to(accelerator.device) |
|
|
|
|
|
alpha_schedule = alpha_schedule.to(accelerator.device) |
|
sigma_schedule = sigma_schedule.to(accelerator.device) |
|
solver = solver.to(accelerator.device) |
|
|
|
|
|
losses_configs: LossesConfig = pyrallis.load(LossesConfig, open(args.losses_config_path, "r")) |
|
lcm_losses = list() |
|
for loss_config in losses_configs.lcm_losses: |
|
logger.info(f"Loading lcm loss: {loss_config.name}") |
|
loss = namedtuple("loss", ["loss", "weight"]) |
|
loss_class = eval(loss_config.name) |
|
lcm_losses.append(loss(loss_class( |
|
visualize_every_k=loss_config.visualize_every_k, |
|
dtype=weight_dtype, |
|
accelerator=accelerator, |
|
dino_model=image_encoder, |
|
dino_preprocess=image_processor, |
|
huber_c=args.huber_c, |
|
**loss_config.init_params), weight=loss_config.weight)) |
|
|
|
|
|
for n, p in unet.named_parameters(): |
|
if p.requires_grad: |
|
assert "lora" in n, n |
|
assert p.dtype == torch.float32, n |
|
else: |
|
assert "lora" not in n, f"{n}" |
|
assert p.dtype == weight_dtype, n |
|
if args.sanity_check: |
|
if args.resume_from_checkpoint: |
|
if args.resume_from_checkpoint != "latest": |
|
path = os.path.basename(args.resume_from_checkpoint) |
|
else: |
|
|
|
dirs = os.listdir(args.output_dir) |
|
dirs = [d for d in dirs if d.startswith("checkpoint")] |
|
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) |
|
path = dirs[-1] if len(dirs) > 0 else None |
|
|
|
if path is None: |
|
accelerator.print( |
|
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." |
|
) |
|
args.resume_from_checkpoint = None |
|
initial_global_step = 0 |
|
else: |
|
accelerator.print(f"Resuming from checkpoint {path}") |
|
accelerator.load_state(os.path.join(args.output_dir, path)) |
|
|
|
|
|
batch = next(iter(train_dataloader)) |
|
lq_img, gt_img = deg_pipeline(batch["images"], (batch["kernel"], batch["kernel2"], batch["sinc_kernel"])) |
|
out_images = log_validation(unwrap_model(unet), vae, text_encoder_one, text_encoder_two, tokenizer_one, tokenizer_two, |
|
lcm_scheduler, image_encoder, image_processor, |
|
args, accelerator, weight_dtype, step=0, lq_img=lq_img, gt_img=gt_img, is_final_validation=False, log_local=True) |
|
exit() |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if args.max_train_steps is None: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
if num_training_steps_for_scheduler != args.max_train_steps * accelerator.num_processes: |
|
logger.warning( |
|
f"The length of the 'train_dataloader' after 'accelerator.prepare' ({len(train_dataloader)}) does not match " |
|
f"the expected length ({len_train_dataloader_after_sharding}) when the learning rate scheduler was created. " |
|
f"This inconsistency may result in the learning rate scheduler not functioning properly." |
|
) |
|
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
|
|
|
|
|
|
if accelerator.is_main_process: |
|
tracker_config = dict(vars(args)) |
|
|
|
|
|
tracker_config.pop("validation_prompt") |
|
tracker_config.pop("validation_image") |
|
|
|
accelerator.init_trackers(args.tracker_project_name, config=tracker_config) |
|
|
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len(train_dataset)}") |
|
logger.info(f" Num Epochs = {args.num_train_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") |
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") |
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") |
|
logger.info(f" Total optimization steps = {args.max_train_steps}") |
|
global_step = 0 |
|
first_epoch = 0 |
|
|
|
|
|
if args.resume_from_checkpoint: |
|
if args.resume_from_checkpoint != "latest": |
|
path = os.path.basename(args.resume_from_checkpoint) |
|
else: |
|
|
|
dirs = os.listdir(args.output_dir) |
|
dirs = [d for d in dirs if d.startswith("checkpoint")] |
|
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) |
|
path = dirs[-1] if len(dirs) > 0 else None |
|
|
|
if path is None: |
|
accelerator.print( |
|
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." |
|
) |
|
args.resume_from_checkpoint = None |
|
initial_global_step = 0 |
|
else: |
|
accelerator.print(f"Resuming from checkpoint {path}") |
|
accelerator.load_state(os.path.join(args.output_dir, path)) |
|
global_step = int(path.split("-")[1]) |
|
|
|
initial_global_step = global_step |
|
first_epoch = global_step // num_update_steps_per_epoch |
|
else: |
|
initial_global_step = 0 |
|
|
|
progress_bar = tqdm( |
|
range(0, args.max_train_steps), |
|
initial=initial_global_step, |
|
desc="Steps", |
|
|
|
disable=not accelerator.is_local_main_process, |
|
) |
|
|
|
unet.train() |
|
for epoch in range(first_epoch, args.num_train_epochs): |
|
for step, batch in enumerate(train_dataloader): |
|
with accelerator.accumulate(unet): |
|
total_loss = torch.tensor(0.0) |
|
bsz = batch["images"].shape[0] |
|
|
|
|
|
rand_tensor = torch.rand(bsz) |
|
drop_image_idx = rand_tensor < args.image_drop_rate |
|
drop_text_idx = (rand_tensor >= args.image_drop_rate) & (rand_tensor < args.image_drop_rate + args.text_drop_rate) |
|
drop_both_idx = (rand_tensor >= args.image_drop_rate + args.text_drop_rate) & (rand_tensor < args.image_drop_rate + args.text_drop_rate + args.cond_drop_rate) |
|
drop_image_idx = drop_image_idx | drop_both_idx |
|
drop_text_idx = drop_text_idx | drop_both_idx |
|
|
|
with torch.no_grad(): |
|
lq_img, gt_img = deg_pipeline(batch["images"], (batch["kernel"], batch["kernel2"], batch["sinc_kernel"])) |
|
lq_pt = image_processor( |
|
images=lq_img*0.5+0.5, |
|
do_rescale=False, return_tensors="pt" |
|
).pixel_values |
|
image_embeds = prepare_training_image_embeds( |
|
image_encoder, image_processor, |
|
ip_adapter_image=lq_pt, ip_adapter_image_embeds=None, |
|
device=accelerator.device, drop_rate=args.image_drop_rate, output_hidden_state=args.image_encoder_hidden_feature, |
|
idx_to_replace=drop_image_idx |
|
) |
|
uncond_image_embeds = prepare_training_image_embeds( |
|
image_encoder, image_processor, |
|
ip_adapter_image=lq_pt, ip_adapter_image_embeds=None, |
|
device=accelerator.device, drop_rate=1.0, output_hidden_state=args.image_encoder_hidden_feature, |
|
idx_to_replace=torch.ones_like(drop_image_idx) |
|
) |
|
|
|
text, orig_size, crop_coords = ( |
|
batch["text"], |
|
batch["original_sizes"], |
|
batch["crop_top_lefts"], |
|
) |
|
|
|
encoded_text = compute_embeddings_fn(text, orig_size, crop_coords) |
|
uncond_encoded_text = compute_embeddings_fn([""]*len(text), orig_size, crop_coords) |
|
|
|
|
|
gt_img = gt_img.to(dtype=vae.dtype) |
|
latents = [] |
|
for i in range(0, gt_img.shape[0], args.vae_encode_batch_size): |
|
latents.append(vae.encode(gt_img[i : i + args.vae_encode_batch_size]).latent_dist.sample()) |
|
latents = torch.cat(latents, dim=0) |
|
|
|
|
|
latents = latents * vae.config.scaling_factor |
|
if args.pretrained_vae_model_name_or_path is None: |
|
latents = latents.to(weight_dtype) |
|
|
|
|
|
|
|
bsz = latents.shape[0] |
|
topk = noise_scheduler.config.num_train_timesteps // args.num_ddim_timesteps |
|
index = torch.randint(0, args.num_ddim_timesteps, (bsz,), device=latents.device).long() |
|
start_timesteps = solver.ddim_timesteps[index] |
|
timesteps = start_timesteps - topk |
|
timesteps = torch.where(timesteps < 0, torch.zeros_like(timesteps), timesteps) |
|
|
|
|
|
c_skip_start, c_out_start = scalings_for_boundary_conditions( |
|
start_timesteps, timestep_scaling=args.timestep_scaling_factor |
|
) |
|
c_skip_start, c_out_start = [append_dims(x, latents.ndim) for x in [c_skip_start, c_out_start]] |
|
c_skip, c_out = scalings_for_boundary_conditions( |
|
timesteps, timestep_scaling=args.timestep_scaling_factor |
|
) |
|
c_skip, c_out = [append_dims(x, latents.ndim) for x in [c_skip, c_out]] |
|
|
|
|
|
|
|
noise = torch.randn_like(latents) |
|
noisy_model_input = noise_scheduler.add_noise(latents, noise, start_timesteps) |
|
|
|
|
|
|
|
w = (args.w_max - args.w_min) * torch.rand((bsz,)) + args.w_min |
|
w = w.reshape(bsz, 1, 1, 1) |
|
w = w.to(device=latents.device, dtype=latents.dtype) |
|
|
|
|
|
prompt_embeds = encoded_text.pop("prompt_embeds") |
|
encoded_text["image_embeds"] = image_embeds |
|
uncond_prompt_embeds = uncond_encoded_text.pop("prompt_embeds") |
|
uncond_encoded_text["image_embeds"] = image_embeds |
|
|
|
|
|
noise_pred = unet( |
|
noisy_model_input, |
|
start_timesteps, |
|
encoder_hidden_states=uncond_prompt_embeds, |
|
added_cond_kwargs=uncond_encoded_text, |
|
).sample |
|
pred_x_0 = get_predicted_original_sample( |
|
noise_pred, |
|
start_timesteps, |
|
noisy_model_input, |
|
noise_scheduler.config.prediction_type, |
|
alpha_schedule, |
|
sigma_schedule, |
|
) |
|
model_pred = c_skip_start * noisy_model_input + c_out_start * pred_x_0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
accelerator.unwrap_model(unet).disable_adapters() |
|
with torch.no_grad(): |
|
|
|
|
|
teacher_added_cond = dict() |
|
for k,v in encoded_text.items(): |
|
if isinstance(v, torch.Tensor): |
|
teacher_added_cond[k] = v.to(weight_dtype) |
|
else: |
|
teacher_image_embeds = [] |
|
for img_emb in v: |
|
teacher_image_embeds.append(img_emb.to(weight_dtype)) |
|
teacher_added_cond[k] = teacher_image_embeds |
|
cond_teacher_output = unet( |
|
noisy_model_input, |
|
start_timesteps, |
|
encoder_hidden_states=prompt_embeds, |
|
added_cond_kwargs=teacher_added_cond, |
|
).sample |
|
cond_pred_x0 = get_predicted_original_sample( |
|
cond_teacher_output, |
|
start_timesteps, |
|
noisy_model_input, |
|
noise_scheduler.config.prediction_type, |
|
alpha_schedule, |
|
sigma_schedule, |
|
) |
|
cond_pred_noise = get_predicted_noise( |
|
cond_teacher_output, |
|
start_timesteps, |
|
noisy_model_input, |
|
noise_scheduler.config.prediction_type, |
|
alpha_schedule, |
|
sigma_schedule, |
|
) |
|
|
|
|
|
teacher_added_uncond = dict() |
|
uncond_encoded_text["image_embeds"] = uncond_image_embeds |
|
for k,v in uncond_encoded_text.items(): |
|
if isinstance(v, torch.Tensor): |
|
teacher_added_uncond[k] = v.to(weight_dtype) |
|
else: |
|
teacher_uncond_image_embeds = [] |
|
for img_emb in v: |
|
teacher_uncond_image_embeds.append(img_emb.to(weight_dtype)) |
|
teacher_added_uncond[k] = teacher_uncond_image_embeds |
|
uncond_teacher_output = unet( |
|
noisy_model_input, |
|
start_timesteps, |
|
encoder_hidden_states=uncond_prompt_embeds.to(weight_dtype), |
|
added_cond_kwargs=teacher_added_uncond, |
|
).sample |
|
uncond_pred_x0 = get_predicted_original_sample( |
|
uncond_teacher_output, |
|
start_timesteps, |
|
noisy_model_input, |
|
noise_scheduler.config.prediction_type, |
|
alpha_schedule, |
|
sigma_schedule, |
|
) |
|
uncond_pred_noise = get_predicted_noise( |
|
uncond_teacher_output, |
|
start_timesteps, |
|
noisy_model_input, |
|
noise_scheduler.config.prediction_type, |
|
alpha_schedule, |
|
sigma_schedule, |
|
) |
|
|
|
|
|
|
|
pred_x0 = cond_pred_x0 + w * (cond_pred_x0 - uncond_pred_x0) |
|
pred_noise = cond_pred_noise + w * (cond_pred_noise - uncond_pred_noise) |
|
|
|
|
|
|
|
x_prev = solver.ddim_step(pred_x0, pred_noise, index).to(weight_dtype) |
|
|
|
|
|
accelerator.unwrap_model(unet).enable_adapters() |
|
|
|
|
|
|
|
with torch.no_grad(): |
|
uncond_encoded_text["image_embeds"] = image_embeds |
|
target_added_cond = dict() |
|
for k,v in uncond_encoded_text.items(): |
|
if isinstance(v, torch.Tensor): |
|
target_added_cond[k] = v.to(weight_dtype) |
|
else: |
|
target_image_embeds = [] |
|
for img_emb in v: |
|
target_image_embeds.append(img_emb.to(weight_dtype)) |
|
target_added_cond[k] = target_image_embeds |
|
target_noise_pred = unet( |
|
x_prev, |
|
timesteps, |
|
encoder_hidden_states=uncond_prompt_embeds.to(weight_dtype), |
|
added_cond_kwargs=target_added_cond, |
|
).sample |
|
pred_x_0 = get_predicted_original_sample( |
|
target_noise_pred, |
|
timesteps, |
|
x_prev, |
|
noise_scheduler.config.prediction_type, |
|
alpha_schedule, |
|
sigma_schedule, |
|
) |
|
target = c_skip * x_prev + c_out * pred_x_0 |
|
|
|
|
|
lcm_loss_arguments = { |
|
"target": target.float(), |
|
"predict": model_pred.float(), |
|
} |
|
loss_dict = dict() |
|
|
|
|
|
|
|
|
|
for loss_config in lcm_losses: |
|
if loss_config.loss.__class__.__name__=="DINOLoss": |
|
with torch.no_grad(): |
|
pixel_target = [] |
|
latent_target = target.to(dtype=vae.dtype) |
|
for i in range(0, latent_target.shape[0], args.vae_encode_batch_size): |
|
pixel_target.append( |
|
vae.decode( |
|
latent_target[i : i + args.vae_encode_batch_size] / vae.config.scaling_factor, |
|
return_dict=False |
|
)[0] |
|
) |
|
pixel_target = torch.cat(pixel_target, dim=0) |
|
pixel_pred = [] |
|
latent_pred = model_pred.to(dtype=vae.dtype) |
|
for i in range(0, latent_pred.shape[0], args.vae_encode_batch_size): |
|
pixel_pred.append( |
|
vae.decode( |
|
latent_pred[i : i + args.vae_encode_batch_size] / vae.config.scaling_factor, |
|
return_dict=False |
|
)[0] |
|
) |
|
pixel_pred = torch.cat(pixel_pred, dim=0) |
|
dino_loss_arguments = { |
|
"target": pixel_target, |
|
"predict": pixel_pred, |
|
} |
|
non_weighted_loss = loss_config.loss(**dino_loss_arguments, accelerator=accelerator) |
|
loss_dict[loss_config.loss.__class__.__name__] = non_weighted_loss.item() |
|
total_loss = total_loss + non_weighted_loss * loss_config.weight |
|
else: |
|
non_weighted_loss = loss_config.loss(**lcm_loss_arguments, accelerator=accelerator) |
|
total_loss = total_loss + non_weighted_loss * loss_config.weight |
|
loss_dict[loss_config.loss.__class__.__name__] = non_weighted_loss.item() |
|
|
|
|
|
accelerator.backward(total_loss) |
|
if accelerator.sync_gradients: |
|
accelerator.clip_grad_norm_(params_to_optimize, args.max_grad_norm) |
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad(set_to_none=True) |
|
|
|
|
|
if accelerator.sync_gradients: |
|
progress_bar.update(1) |
|
global_step += 1 |
|
|
|
if accelerator.is_main_process: |
|
if global_step % args.checkpointing_steps == 0: |
|
|
|
if args.checkpoints_total_limit is not None: |
|
checkpoints = os.listdir(args.output_dir) |
|
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] |
|
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) |
|
|
|
|
|
if len(checkpoints) >= args.checkpoints_total_limit: |
|
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 |
|
removing_checkpoints = checkpoints[0:num_to_remove] |
|
|
|
logger.info( |
|
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" |
|
) |
|
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") |
|
|
|
for removing_checkpoint in removing_checkpoints: |
|
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) |
|
shutil.rmtree(removing_checkpoint) |
|
|
|
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") |
|
accelerator.save_state(save_path) |
|
logger.info(f"Saved state to {save_path}") |
|
|
|
if global_step % args.validation_steps == 0: |
|
out_images = log_validation(unwrap_model(unet), vae, text_encoder_one, text_encoder_two, tokenizer_one, tokenizer_two, |
|
lcm_scheduler, image_encoder, image_processor, |
|
args, accelerator, weight_dtype, global_step, lq_img, gt_img, is_final_validation=False, log_local=False) |
|
|
|
logs = dict() |
|
|
|
logs.update(loss_dict) |
|
logs.update({"lr": lr_scheduler.get_last_lr()[0]}) |
|
progress_bar.set_postfix(**logs) |
|
accelerator.log(logs, step=global_step) |
|
|
|
if global_step >= args.max_train_steps: |
|
break |
|
|
|
|
|
accelerator.wait_for_everyone() |
|
if accelerator.is_main_process: |
|
unet = accelerator.unwrap_model(unet) |
|
unet_lora_state_dict = convert_state_dict_to_diffusers(get_peft_model_state_dict(unet)) |
|
StableDiffusionXLPipeline.save_lora_weights(args.output_dir, unet_lora_layers=unet_lora_state_dict) |
|
|
|
if args.push_to_hub: |
|
upload_folder( |
|
repo_id=repo_id, |
|
folder_path=args.output_dir, |
|
commit_message="End of training", |
|
ignore_patterns=["step_*", "epoch_*"], |
|
) |
|
|
|
del unet |
|
torch.cuda.empty_cache() |
|
|
|
|
|
if args.validation_steps is not None: |
|
log_validation(unwrap_model(unet), vae, text_encoder, text_encoder_2, tokenizer, tokenizer_2, |
|
lcm_scheduler, image_encoder=None, image_processor=None, |
|
args=args, accelerator=accelerator, weight_dtype=weight_dtype, step=0, is_final_validation=False, log_local=True) |
|
|
|
accelerator.end_training() |
|
|
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
main(args) |