|
import os |
|
import argparse |
|
import numpy as np |
|
import torch |
|
|
|
from PIL import Image |
|
from schedulers.lcm_single_step_scheduler import LCMSingleStepScheduler |
|
|
|
from diffusers import DDPMScheduler |
|
|
|
from module.ip_adapter.utils import load_adapter_to_pipe |
|
from pipelines.sdxl_instantir import InstantIRPipeline |
|
|
|
|
|
def name_unet_submodules(unet): |
|
def recursive_find_module(name, module, end=False): |
|
if end: |
|
for sub_name, sub_module in module.named_children(): |
|
sub_module.full_name = f"{name}.{sub_name}" |
|
return |
|
if not "up_blocks" in name and not "down_blocks" in name and not "mid_block" in name: return |
|
elif "resnets" in name: return |
|
for sub_name, sub_module in module.named_children(): |
|
end = True if sub_name == "transformer_blocks" else False |
|
recursive_find_module(f"{name}.{sub_name}", sub_module, end) |
|
|
|
for name, module in unet.named_children(): |
|
recursive_find_module(name, module) |
|
|
|
|
|
def resize_img(input_image, max_side=1280, min_side=1024, size=None, |
|
pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64): |
|
|
|
w, h = input_image.size |
|
if size is not None: |
|
w_resize_new, h_resize_new = size |
|
else: |
|
|
|
|
|
ratio = max_side / max(h, w) |
|
input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode) |
|
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number |
|
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number |
|
input_image = input_image.resize([w_resize_new, h_resize_new], mode) |
|
|
|
if pad_to_max_side: |
|
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255 |
|
offset_x = (max_side - w_resize_new) // 2 |
|
offset_y = (max_side - h_resize_new) // 2 |
|
res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image) |
|
input_image = Image.fromarray(res) |
|
return input_image |
|
|
|
|
|
def tensor_to_pil(images): |
|
""" |
|
Convert image tensor or a batch of image tensors to PIL image(s). |
|
""" |
|
images = images.clamp(0, 1) |
|
images_np = images.detach().cpu().numpy() |
|
if images_np.ndim == 4: |
|
images_np = np.transpose(images_np, (0, 2, 3, 1)) |
|
elif images_np.ndim == 3: |
|
images_np = np.transpose(images_np, (1, 2, 0)) |
|
images_np = images_np[None, ...] |
|
images_np = (images_np * 255).round().astype("uint8") |
|
if images_np.shape[-1] == 1: |
|
|
|
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images_np] |
|
else: |
|
pil_images = [Image.fromarray(image[:, :, :3]) for image in images_np] |
|
|
|
return pil_images |
|
|
|
|
|
def calc_mean_std(feat, eps=1e-5): |
|
"""Calculate mean and std for adaptive_instance_normalization. |
|
Args: |
|
feat (Tensor): 4D tensor. |
|
eps (float): A small value added to the variance to avoid |
|
divide-by-zero. Default: 1e-5. |
|
""" |
|
size = feat.size() |
|
assert len(size) == 4, 'The input feature should be 4D tensor.' |
|
b, c = size[:2] |
|
feat_var = feat.view(b, c, -1).var(dim=2) + eps |
|
feat_std = feat_var.sqrt().view(b, c, 1, 1) |
|
feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1) |
|
return feat_mean, feat_std |
|
|
|
|
|
def adaptive_instance_normalization(content_feat, style_feat): |
|
size = content_feat.size() |
|
style_mean, style_std = calc_mean_std(style_feat) |
|
content_mean, content_std = calc_mean_std(content_feat) |
|
normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size) |
|
return normalized_feat * style_std.expand(size) + style_mean.expand(size) |
|
|
|
|
|
def main(args, device): |
|
|
|
|
|
pipe = InstantIRPipeline.from_pretrained( |
|
args.sdxl_path, |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
|
|
print("Loading LQ-Adapter...") |
|
load_adapter_to_pipe( |
|
pipe, |
|
args.adapter_model_path if args.adapter_model_path is not None else os.path.join(args.instantir_path, 'adapter.pt'), |
|
args.vision_encoder_path, |
|
use_clip_encoder=args.use_clip_encoder, |
|
) |
|
|
|
|
|
previewer_lora_path = args.previewer_lora_path if args.previewer_lora_path is not None else args.instantir_path |
|
if previewer_lora_path is not None: |
|
lora_alpha = pipe.prepare_previewers(previewer_lora_path) |
|
print(f"use lora alpha {lora_alpha}") |
|
pipe.to(device=device, dtype=torch.float16) |
|
pipe.scheduler = DDPMScheduler.from_pretrained(args.sdxl_path, subfolder="scheduler") |
|
lcm_scheduler = LCMSingleStepScheduler.from_config(pipe.scheduler.config) |
|
|
|
|
|
print("Loading checkpoint...") |
|
pretrained_state_dict = torch.load(os.path.join(args.instantir_path, "aggregator.pt"), map_location="cpu") |
|
pipe.aggregator.load_state_dict(pretrained_state_dict) |
|
pipe.aggregator.to(device, dtype=torch.float16) |
|
|
|
|
|
|
|
post_fix = f"_{args.post_fix}" if args.post_fix else "" |
|
os.makedirs(f"{args.out_path}/{post_fix}", exist_ok=True) |
|
|
|
processed_imgs = os.listdir(os.path.join(args.out_path, post_fix)) |
|
lq_files = [] |
|
lq_batch = [] |
|
if os.path.isfile(args.test_path): |
|
all_inputs = [args.test_path.split("/")[-1]] |
|
else: |
|
all_inputs = os.listdir(args.test_path) |
|
all_inputs.sort() |
|
for file in all_inputs: |
|
if file in processed_imgs: |
|
print(f"Skip {file}") |
|
continue |
|
lq_batch.append(f"{file}") |
|
if len(lq_batch) == args.batch_size: |
|
lq_files.append(lq_batch) |
|
lq_batch = [] |
|
|
|
if len(lq_batch) > 0: |
|
lq_files.append(lq_batch) |
|
|
|
for lq_batch in lq_files: |
|
generator = torch.Generator(device=device).manual_seed(args.seed) |
|
pil_lqs = [Image.open(os.path.join(args.test_path, file)) for file in lq_batch] |
|
if args.width is None or args.height is None: |
|
lq = [resize_img(pil_lq.convert("RGB"), size=None) for pil_lq in pil_lqs] |
|
else: |
|
lq = [resize_img(pil_lq.convert("RGB"), size=(args.width, args.height)) for pil_lq in pil_lqs] |
|
timesteps = None |
|
if args.denoising_start < 1000: |
|
timesteps = [ |
|
i * (args.denoising_start//args.num_inference_steps) + pipe.scheduler.config.steps_offset for i in range(0, args.num_inference_steps) |
|
] |
|
timesteps = timesteps[::-1] |
|
pipe.scheduler.set_timesteps(args.num_inference_steps, device) |
|
timesteps = pipe.scheduler.timesteps |
|
if args.prompt is None or len(args.prompt) == 0: |
|
prompt = "Photorealistic, highly detailed, hyper detailed photo - realistic maximum detail, 32k, \ |
|
ultra HD, extreme meticulous detailing, skin pore detailing, \ |
|
hyper sharpness, perfect without deformations, \ |
|
taken using a Canon EOS R camera, Cinematic, High Contrast, Color Grading. " |
|
else: |
|
prompt = args.prompt |
|
if not isinstance(prompt, list): |
|
prompt = [prompt] |
|
prompt = prompt*len(lq) |
|
if args.neg_prompt is None or len(args.neg_prompt) == 0: |
|
neg_prompt = "blurry, out of focus, unclear, depth of field, over-smooth, \ |
|
sketch, oil painting, cartoon, CG Style, 3D render, unreal engine, \ |
|
dirty, messy, worst quality, low quality, frames, painting, illustration, drawing, art, \ |
|
watermark, signature, jpeg artifacts, deformed, lowres" |
|
else: |
|
neg_prompt = args.neg_prompt |
|
if not isinstance(neg_prompt, list): |
|
neg_prompt = [neg_prompt] |
|
neg_prompt = neg_prompt*len(lq) |
|
image = pipe( |
|
prompt=prompt, |
|
image=lq, |
|
num_inference_steps=args.num_inference_steps, |
|
generator=generator, |
|
timesteps=timesteps, |
|
negative_prompt=neg_prompt, |
|
guidance_scale=args.cfg, |
|
previewer_scheduler=lcm_scheduler, |
|
preview_start=args.preview_start, |
|
control_guidance_end=args.creative_start, |
|
).images |
|
|
|
if args.save_preview_row: |
|
for i, lcm_image in enumerate(image[1]): |
|
lcm_image.save(f"./lcm/{i}.png") |
|
for i, rec_image in enumerate(image): |
|
rec_image.save(f"{args.out_path}/{post_fix}/{lq_batch[i]}") |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description="InstantIR pipeline") |
|
parser.add_argument( |
|
"--sdxl_path", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="Path to pretrained model or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--previewer_lora_path", |
|
type=str, |
|
default=None, |
|
help="Path to LCM lora or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--pretrained_vae_model_name_or_path", |
|
type=str, |
|
default=None, |
|
help="Path to an improved VAE to stabilize training. For more details check out: https://github.com/huggingface/diffusers/pull/4038.", |
|
) |
|
parser.add_argument( |
|
"--instantir_path", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="Path to pretrained instantir model.", |
|
) |
|
parser.add_argument( |
|
"--vision_encoder_path", |
|
type=str, |
|
default='/share/huangrenyuan/model_zoo/vis_backbone/dinov2_large', |
|
help="Path to image encoder for IP-Adapters or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--adapter_model_path", |
|
type=str, |
|
default=None, |
|
help="Path to IP-Adapter models or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--adapter_tokens", |
|
type=int, |
|
default=64, |
|
help="Number of tokens to use in IP-adapter cross attention mechanism.", |
|
) |
|
parser.add_argument( |
|
"--use_clip_encoder", |
|
action="store_true", |
|
help="Whether or not to use DINO as image encoder, else CLIP encoder.", |
|
) |
|
parser.add_argument( |
|
"--denoising_start", |
|
type=int, |
|
default=1000, |
|
help="Diffusion start timestep." |
|
) |
|
parser.add_argument( |
|
"--num_inference_steps", |
|
type=int, |
|
default=30, |
|
help="Diffusion steps." |
|
) |
|
parser.add_argument( |
|
"--creative_start", |
|
type=float, |
|
default=1.0, |
|
help="Proportion of timesteps for creative restoration. 1.0 means no creative restoration while 0.0 means completely free rendering." |
|
) |
|
parser.add_argument( |
|
"--preview_start", |
|
type=float, |
|
default=0.0, |
|
help="Proportion of timesteps to stop previewing at the begining to enhance fidelity to input." |
|
) |
|
parser.add_argument( |
|
"--resolution", |
|
type=int, |
|
default=1024, |
|
help="Number of tokens to use in IP-adapter cross attention mechanism.", |
|
) |
|
parser.add_argument( |
|
"--batch_size", |
|
type=int, |
|
default=6, |
|
help="Test batch size." |
|
) |
|
parser.add_argument( |
|
"--width", |
|
type=int, |
|
default=None, |
|
help="Output image width." |
|
) |
|
parser.add_argument( |
|
"--height", |
|
type=int, |
|
default=None, |
|
help="Output image height." |
|
) |
|
parser.add_argument( |
|
"--cfg", |
|
type=float, |
|
default=7.0, |
|
help="Scale of Classifier-Free-Guidance (CFG).", |
|
) |
|
parser.add_argument( |
|
"--post_fix", |
|
type=str, |
|
default=None, |
|
help="Subfolder name for restoration output under the output directory.", |
|
) |
|
parser.add_argument( |
|
"--variant", |
|
type=str, |
|
default='fp16', |
|
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", |
|
) |
|
parser.add_argument( |
|
"--revision", |
|
type=str, |
|
default=None, |
|
required=False, |
|
help="Revision of pretrained model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--save_preview_row", |
|
action="store_true", |
|
help="Whether or not to save the intermediate lcm outputs.", |
|
) |
|
parser.add_argument( |
|
"--prompt", |
|
type=str, |
|
default='', |
|
nargs="+", |
|
help=( |
|
"A set of prompts for creative restoration. Provide either a matching number of test images," |
|
" or a single prompt to be used with all inputs." |
|
), |
|
) |
|
parser.add_argument( |
|
"--neg_prompt", |
|
type=str, |
|
default='', |
|
nargs="+", |
|
help=( |
|
"A set of negative prompts for creative restoration. Provide either a matching number of test images," |
|
" or a single negative prompt to be used with all inputs." |
|
), |
|
) |
|
parser.add_argument( |
|
"--test_path", |
|
type=str, |
|
default=None, |
|
required=True, |
|
help="Test directory.", |
|
) |
|
parser.add_argument( |
|
"--out_path", |
|
type=str, |
|
default="./output", |
|
help="Output directory.", |
|
) |
|
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.") |
|
args = parser.parse_args() |
|
args.height = args.height or args.width |
|
args.width = args.width or args.height |
|
if args.height is not None and (args.width % 64 != 0 or args.height % 64 != 0): |
|
raise ValueError("Image resolution must be divisible by 64.") |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
main(args, device) |