|
from huggingface_hub import hf_hub_download |
|
|
|
hf_hub_download(repo_id="InstantX/InstantIR", filename="models/adapter.pt", local_dir=".") |
|
hf_hub_download(repo_id="InstantX/InstantIR", filename="models/aggregator.pt", local_dir=".") |
|
hf_hub_download(repo_id="InstantX/InstantIR", filename="models/previewer_lora_weights.bin", local_dir=".") |
|
|
|
import torch |
|
from PIL import Image |
|
|
|
from diffusers import DDPMScheduler |
|
from schedulers.lcm_single_step_scheduler import LCMSingleStepScheduler |
|
|
|
from module.ip_adapter.utils import load_adapter_to_pipe |
|
from pipelines.sdxl_instantir import InstantIRPipeline |
|
|
|
def resize_img(input_image, max_side=1280, min_side=1024, size=None, |
|
pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64): |
|
|
|
w, h = input_image.size |
|
if size is not None: |
|
w_resize_new, h_resize_new = size |
|
else: |
|
|
|
|
|
ratio = max_side / max(h, w) |
|
input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode) |
|
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number |
|
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number |
|
input_image = input_image.resize([w_resize_new, h_resize_new], mode) |
|
|
|
if pad_to_max_side: |
|
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255 |
|
offset_x = (max_side - w_resize_new) // 2 |
|
offset_y = (max_side - h_resize_new) // 2 |
|
res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image) |
|
input_image = Image.fromarray(res) |
|
return input_image |
|
|
|
|
|
instantir_path = f'./models' |
|
|
|
|
|
pipe = InstantIRPipeline.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16) |
|
|
|
|
|
load_adapter_to_pipe( |
|
pipe, |
|
f"{instantir_path}/adapter.pt", |
|
image_encoder_or_path = 'facebook/dinov2-large', |
|
) |
|
|
|
|
|
pipe.prepare_previewers(instantir_path) |
|
pipe.scheduler = DDPMScheduler.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', subfolder="scheduler") |
|
lcm_scheduler = LCMSingleStepScheduler.from_config(pipe.scheduler.config) |
|
|
|
|
|
pretrained_state_dict = torch.load(f"{instantir_path}/aggregator.pt") |
|
pipe.aggregator.load_state_dict(pretrained_state_dict) |
|
|
|
|
|
pipe.to(device='cuda', dtype=torch.float16) |
|
pipe.aggregator.to(device='cuda', dtype=torch.float16) |
|
|
|
PROMPT = "Photorealistic, highly detailed, hyper detailed photo - realistic maximum detail, 32k, \ |
|
ultra HD, extreme meticulous detailing, skin pore detailing, \ |
|
hyper sharpness, perfect without deformations, \ |
|
taken using a Canon EOS R camera, Cinematic, High Contrast, Color Grading. " |
|
|
|
NEG_PROMPT = "blurry, out of focus, unclear, depth of field, over-smooth, \ |
|
sketch, oil painting, cartoon, CG Style, 3D render, unreal engine, \ |
|
dirty, messy, worst quality, low quality, frames, painting, illustration, drawing, art, \ |
|
watermark, signature, jpeg artifacts, deformed, lowres" |
|
|
|
def infer(prompt, input_image, steps=30, cfg_scale=7.0, guidance_end=1.0, |
|
creative_restoration=False, seed=3407, height=1024, width=1024): |
|
|
|
|
|
|
|
low_quality_image = Image.open(input_image).convert("RGB") |
|
|
|
lq = [resize_img(low_quality_image, size=(width, height))] |
|
generator = torch.Generator(device='cuda').manual_seed(seed) |
|
timesteps = [ |
|
i * (1000//steps) + pipe.scheduler.config.steps_offset for i in range(0, steps) |
|
] |
|
timesteps = timesteps[::-1] |
|
|
|
prompt = PROMPT if len(prompt)==0 else prompt |
|
neg_prompt = NEG_PROMPT |
|
|
|
|
|
image = pipe( |
|
prompt=[prompt]*len(lq), |
|
image=lq, |
|
num_inference_steps=steps, |
|
generator=generator, |
|
timesteps=timesteps, |
|
negative_prompt=[neg_prompt]*len(lq), |
|
guidance_scale=cfg_scale, |
|
previewer_scheduler=lcm_scheduler, |
|
).images[0] |
|
|
|
return image |
|
|
|
import gradio as gr |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Column(): |
|
with gr.Row(): |
|
with gr.Column(): |
|
lq_img = gr.Image(label="Low-quality image", type="filepath") |
|
with gr.Group(): |
|
prompt = gr.Textbox(label="Prompt", value="") |
|
|
|
submit_btn = gr.Button("InstantIR magic!") |
|
output_img = gr.Image(label="InstantIR restored") |
|
submit_btn.click( |
|
fn=infer, |
|
inputs=[prompt, lq_img], |
|
outputs=[output_img] |
|
) |
|
demo.launch(show_error=True) |