Spaces:
Sleeping
Sleeping
# Copyright 2021 AlQuraishi Laboratory | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import torch | |
def drmsd(structure_1, structure_2, mask=None): | |
def prep_d(structure): | |
d = structure[..., :, None, :] - structure[..., None, :, :] | |
d = d ** 2 | |
d = torch.sqrt(torch.sum(d, dim=-1)) | |
return d | |
d1 = prep_d(structure_1) | |
d2 = prep_d(structure_2) | |
drmsd = d1 - d2 | |
drmsd = drmsd ** 2 | |
if(mask is not None): | |
drmsd = drmsd * (mask[..., None] * mask[..., None, :]) | |
drmsd = torch.sum(drmsd, dim=(-1, -2)) | |
n = d1.shape[-1] if mask is None else torch.sum(mask, dim=-1) | |
drmsd = drmsd * (1 / (n * (n - 1))) if (n > 1).all() else (drmsd * 0.) | |
drmsd = torch.sqrt(drmsd) | |
return drmsd | |
def drmsd_np(structure_1, structure_2, mask=None): | |
structure_1 = torch.tensor(structure_1) | |
structure_2 = torch.tensor(structure_2) | |
if(mask is not None): | |
mask = torch.tensor(mask) | |
return drmsd(structure_1, structure_2, mask) | |
def rmsd(structure_1, structure_2, mask=None): | |
squared_dists = torch.sum((structure_1 - structure_2) ** 2, dim=-1) | |
if mask is None: | |
return torch.sqrt(torch.sum(squared_dists, dim=1) / squared_dists.shape[-1]) | |
squared_dists = squared_dists * mask | |
n = torch.sum(mask, dim=1) | |
return torch.sqrt(torch.sum(squared_dists, dim=1) / n) | |
def gdt(p1, p2, mask, cutoffs): | |
n = torch.sum(mask, dim=-1) | |
p1 = p1.float() | |
p2 = p2.float() | |
distances = torch.sqrt(torch.sum((p1 - p2)**2, dim=-1)) | |
scores = [] | |
for c in cutoffs: | |
score = torch.sum((distances <= c) * mask, dim=-1) / n | |
score = torch.mean(score) | |
scores.append(score) | |
return sum(scores) / len(scores) | |
def gdt_ts(p1, p2, mask): | |
return gdt(p1, p2, mask, [1., 2., 4., 8.]) | |
def gdt_ha(p1, p2, mask): | |
return gdt(p1, p2, mask, [0.5, 1., 2., 4.]) | |