# Copyright 2021 AlQuraishi Laboratory # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch def drmsd(structure_1, structure_2, mask=None): def prep_d(structure): d = structure[..., :, None, :] - structure[..., None, :, :] d = d ** 2 d = torch.sqrt(torch.sum(d, dim=-1)) return d d1 = prep_d(structure_1) d2 = prep_d(structure_2) drmsd = d1 - d2 drmsd = drmsd ** 2 if(mask is not None): drmsd = drmsd * (mask[..., None] * mask[..., None, :]) drmsd = torch.sum(drmsd, dim=(-1, -2)) n = d1.shape[-1] if mask is None else torch.sum(mask, dim=-1) drmsd = drmsd * (1 / (n * (n - 1))) if (n > 1).all() else (drmsd * 0.) drmsd = torch.sqrt(drmsd) return drmsd def drmsd_np(structure_1, structure_2, mask=None): structure_1 = torch.tensor(structure_1) structure_2 = torch.tensor(structure_2) if(mask is not None): mask = torch.tensor(mask) return drmsd(structure_1, structure_2, mask) def rmsd(structure_1, structure_2, mask=None): squared_dists = torch.sum((structure_1 - structure_2) ** 2, dim=-1) if mask is None: return torch.sqrt(torch.sum(squared_dists, dim=1) / squared_dists.shape[-1]) squared_dists = squared_dists * mask n = torch.sum(mask, dim=1) return torch.sqrt(torch.sum(squared_dists, dim=1) / n) def gdt(p1, p2, mask, cutoffs): n = torch.sum(mask, dim=-1) p1 = p1.float() p2 = p2.float() distances = torch.sqrt(torch.sum((p1 - p2)**2, dim=-1)) scores = [] for c in cutoffs: score = torch.sum((distances <= c) * mask, dim=-1) / n score = torch.mean(score) scores.append(score) return sum(scores) / len(scores) def gdt_ts(p1, p2, mask): return gdt(p1, p2, mask, [1., 2., 4., 8.]) def gdt_ha(p1, p2, mask): return gdt(p1, p2, mask, [0.5, 1., 2., 4.])