Spaces:
Sleeping
Sleeping
# Copyright 2021 AlQuraishi Laboratory | |
# Copyright 2021 DeepMind Technologies Limited | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from functools import partialmethod | |
from typing import Optional | |
from abc import ABC, abstractmethod | |
import torch | |
import torch.nn as nn | |
from dockformerpp.model.primitives import Linear, LayerNorm | |
from dockformerpp.utils.precision_utils import is_fp16_enabled | |
from dockformerpp.utils.tensor_utils import permute_final_dims | |
class BaseTriangleMultiplicativeUpdate(nn.Module, ABC): | |
""" | |
Implements Algorithms 11 and 12. | |
""" | |
def __init__(self, c_z, c_hidden, _outgoing): | |
""" | |
Args: | |
c_z: | |
Input channel dimension | |
c: | |
Hidden channel dimension | |
""" | |
super(BaseTriangleMultiplicativeUpdate, self).__init__() | |
self.c_z = c_z | |
self.c_hidden = c_hidden | |
self._outgoing = _outgoing | |
self.linear_g = Linear(self.c_z, self.c_z, init="gating") | |
self.linear_z = Linear(self.c_hidden, self.c_z, init="final") | |
self.layer_norm_in = LayerNorm(self.c_z) | |
self.layer_norm_out = LayerNorm(self.c_hidden) | |
self.sigmoid = nn.Sigmoid() | |
def _combine_projections(self, | |
a: torch.Tensor, | |
b: torch.Tensor, | |
) -> torch.Tensor: | |
if(self._outgoing): | |
a = permute_final_dims(a, (2, 0, 1)) | |
b = permute_final_dims(b, (2, 1, 0)) | |
else: | |
a = permute_final_dims(a, (2, 1, 0)) | |
b = permute_final_dims(b, (2, 0, 1)) | |
p = torch.matmul(a, b) | |
return permute_final_dims(p, (1, 2, 0)) | |
def forward(self, | |
z: torch.Tensor, | |
mask: Optional[torch.Tensor] = None, | |
inplace_safe: bool = False, | |
_add_with_inplace: bool = False | |
) -> torch.Tensor: | |
""" | |
Args: | |
x: | |
[*, N_res, N_res, C_z] input tensor | |
mask: | |
[*, N_res, N_res] input mask | |
Returns: | |
[*, N_res, N_res, C_z] output tensor | |
""" | |
pass | |
class TriangleMultiplicativeUpdate(BaseTriangleMultiplicativeUpdate): | |
""" | |
Implements Algorithms 11 and 12. | |
""" | |
def __init__(self, c_z, c_hidden, _outgoing=True): | |
""" | |
Args: | |
c_z: | |
Input channel dimension | |
c: | |
Hidden channel dimension | |
""" | |
super(TriangleMultiplicativeUpdate, self).__init__(c_z=c_z, | |
c_hidden=c_hidden, | |
_outgoing=_outgoing) | |
self.linear_a_p = Linear(self.c_z, self.c_hidden) | |
self.linear_a_g = Linear(self.c_z, self.c_hidden, init="gating") | |
self.linear_b_p = Linear(self.c_z, self.c_hidden) | |
self.linear_b_g = Linear(self.c_z, self.c_hidden, init="gating") | |
def forward(self, | |
z: torch.Tensor, | |
mask: Optional[torch.Tensor] = None, | |
inplace_safe: bool = False, | |
_add_with_inplace: bool = False, | |
) -> torch.Tensor: | |
""" | |
Args: | |
x: | |
[*, N_res, N_res, C_z] input tensor | |
mask: | |
[*, N_res, N_res] input mask | |
Returns: | |
[*, N_res, N_res, C_z] output tensor | |
""" | |
if mask is None: | |
mask = z.new_ones(z.shape[:-1]) | |
mask = mask.unsqueeze(-1) | |
z = self.layer_norm_in(z) | |
a = mask | |
a = a * self.sigmoid(self.linear_a_g(z)) | |
a = a * self.linear_a_p(z) | |
b = mask | |
b = b * self.sigmoid(self.linear_b_g(z)) | |
b = b * self.linear_b_p(z) | |
# Prevents overflow of torch.matmul in combine projections in | |
# reduced-precision modes | |
a_std = a.std() | |
b_std = b.std() | |
if(is_fp16_enabled() and a_std != 0. and b_std != 0.): | |
a = a / a.std() | |
b = b / b.std() | |
if(is_fp16_enabled()): | |
with torch.cuda.amp.autocast(enabled=False): | |
x = self._combine_projections(a.float(), b.float()) | |
else: | |
x = self._combine_projections(a, b) | |
del a, b | |
x = self.layer_norm_out(x) | |
x = self.linear_z(x) | |
g = self.sigmoid(self.linear_g(z)) | |
x = x * g | |
return x | |
class TriangleMultiplicationOutgoing(TriangleMultiplicativeUpdate): | |
""" | |
Implements Algorithm 11. | |
""" | |
__init__ = partialmethod(TriangleMultiplicativeUpdate.__init__, _outgoing=True) | |
class TriangleMultiplicationIncoming(TriangleMultiplicativeUpdate): | |
""" | |
Implements Algorithm 12. | |
""" | |
__init__ = partialmethod(TriangleMultiplicativeUpdate.__init__, _outgoing=False) | |