Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
from sklearn.linear_model import LinearRegression | |
import matplotlib.pyplot as plt | |
# Page configuration | |
st.set_page_config(page_title="Crime Rate Predictor", layout="centered") | |
st.title("🔮 Crime Rate Prediction for Indian States") | |
# CSV path (Hosted online) | |
csv_path = "https://huggingface.co/spaces/MLDeveloper/crime_rate_predicition/resolve/main/RS_Session_255_AS_116.1%20(2).csv" | |
try: | |
# Load and preprocess data | |
df = pd.read_csv(csv_path) | |
data = df[[ | |
'State/UT', | |
'Number of Cases Registered - 2018-19', | |
'Number of Cases Registered - 2019-20', | |
'Number of Cases Registered - 2020-21', | |
'Number of Cases Registered - 2021-22 (up to 31.10.2021)' | |
]].copy() | |
data.columns = ['State/UT', '2018', '2019', '2020', '2021'] | |
for col in ['2018', '2019', '2020', '2021']: | |
data[col] = pd.to_numeric(data[col], errors='coerce').fillna(0).astype(int) | |
# --- User Inputs --- | |
st.subheader("📝 Enter Details to Predict Future Crime Rates") | |
# Dropdown for State selection | |
state_input = st.selectbox("Select State/UT", sorted(data['State/UT'].unique())) | |
# Slider for year selection | |
year_input = st.slider("Select Starting Year", 2022, 2026, 2022) | |
if state_input: | |
if state_input in data['State/UT'].values: | |
selected_row = data[data['State/UT'] == state_input].iloc[0] | |
X_train = pd.DataFrame({'Year': [2018, 2019, 2020, 2021]}) | |
y_train = selected_row[['2018', '2019', '2020', '2021']].values | |
# Train model and predict | |
model = LinearRegression() | |
model.fit(X_train, y_train) | |
future_years = list(range(year_input, 2028)) | |
predictions = model.predict(pd.DataFrame({'Year': future_years})) | |
result_df = pd.DataFrame({ | |
'Year': future_years, | |
'Predicted Crime Cases': [max(0, int(pred)) for pred in predictions] | |
}) | |
# # Show predictions | |
st.subheader(f"📈 Predicted Crime Rate for {state_input} ({year_input} to 2027)") | |
st.dataframe(result_df, use_container_width=True) | |
# Plot | |
fig, ax = plt.subplots() | |
ax.plot(result_df['Year'], result_df['Predicted Crime Cases'], marker='o', linestyle='--', color='orangered') | |
ax.set_xlabel("Year") | |
ax.set_ylabel("Predicted Crime Cases") | |
ax.set_title(f"{state_input} Crime Rate Prediction") | |
st.pyplot(fig) | |
else: | |
st.warning("⚠️ Please enter a valid State/UT name from the dataset.") | |
else: | |
st.info("👈 Please enter a State/UT name to begin prediction.") | |
except FileNotFoundError: | |
st.error(f"❌ File not found at path: {csv_path}. Please check the path.") | |