import streamlit as st import pandas as pd from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt # Page configuration st.set_page_config(page_title="Crime Rate Predictor", layout="centered") st.title("🔮 Crime Rate Prediction for Indian States") # CSV path (Hosted online) csv_path = "https://huggingface.co/spaces/MLDeveloper/crime_rate_predicition/resolve/main/RS_Session_255_AS_116.1%20(2).csv" try: # Load and preprocess data df = pd.read_csv(csv_path) data = df[[ 'State/UT', 'Number of Cases Registered - 2018-19', 'Number of Cases Registered - 2019-20', 'Number of Cases Registered - 2020-21', 'Number of Cases Registered - 2021-22 (up to 31.10.2021)' ]].copy() data.columns = ['State/UT', '2018', '2019', '2020', '2021'] for col in ['2018', '2019', '2020', '2021']: data[col] = pd.to_numeric(data[col], errors='coerce').fillna(0).astype(int) # --- User Inputs --- st.subheader("📝 Enter Details to Predict Future Crime Rates") # Dropdown for State selection state_input = st.selectbox("Select State/UT", sorted(data['State/UT'].unique())) # Slider for year selection year_input = st.slider("Select Starting Year", 2022, 2026, 2022) if state_input: if state_input in data['State/UT'].values: selected_row = data[data['State/UT'] == state_input].iloc[0] X_train = pd.DataFrame({'Year': [2018, 2019, 2020, 2021]}) y_train = selected_row[['2018', '2019', '2020', '2021']].values # Train model and predict model = LinearRegression() model.fit(X_train, y_train) future_years = list(range(year_input, 2028)) predictions = model.predict(pd.DataFrame({'Year': future_years})) result_df = pd.DataFrame({ 'Year': future_years, 'Predicted Crime Cases': [max(0, int(pred)) for pred in predictions] }) # # Show predictions st.subheader(f"📈 Predicted Crime Rate for {state_input} ({year_input} to 2027)") st.dataframe(result_df, use_container_width=True) # Plot fig, ax = plt.subplots() ax.plot(result_df['Year'], result_df['Predicted Crime Cases'], marker='o', linestyle='--', color='orangered') ax.set_xlabel("Year") ax.set_ylabel("Predicted Crime Cases") ax.set_title(f"{state_input} Crime Rate Prediction") st.pyplot(fig) else: st.warning("⚠️ Please enter a valid State/UT name from the dataset.") else: st.info("👈 Please enter a State/UT name to begin prediction.") except FileNotFoundError: st.error(f"❌ File not found at path: {csv_path}. Please check the path.")